Diamonds may mend a broken heart: Researchers perfect nanodiamonds for use in biomedical applications

February 14, 2013

Researchers at Macquarie University have been perfecting a technique that may help see nanodiamonds used in biomedical applications. PhD student Jana Say has been working on processing the raw diamonds so that they might be used as a tag for biological molecules.

"We are working with nanodiamonds to process them so that they are stable enough to be used as a probe for single-. As diamonds are made from carbon, they are non-toxic which makes them advantageous for many biological applications over other ," says Say.

The processing technique has already contributed to the success of research projects that have used the diamonds. Working with an international team, Say's diamonds were able to be optically trapped and manipulated in three-dimensions – this first time this has been achieved.

The findings from this project where published this week in the prestigious Nature Nanotechnology journal, and researchers involved concluded that Say's processing technique is bringing them closer to using diamond in real world applications such as , and high-resolution sensing.

The diamonds themselves are incredibly small, 5000 times smaller than a human hair, and so the real strength in Say's technique is her ability to consistently produce stable samples.

"The real challenge is reliably producing the same sample. It's a very repetitive and involved process to prepare and characterise these diamonds," she says.

Say, under the supervision of Dr Louise Brown of the Department of Chemistry and Biomolecular Sciecnes, has plans to continue to develop these diamonds and collaborate with other researchers to explore their full potential.

"Jana's work is incredibly important," says Dr Brown. "These diamonds were recently used in a project which won a Macquarie University research excellence award for demonstrating that nanodiamonds can be isolated and made to emit light. With this work, we continue to make real breakthroughs in this area and are contributing to the long term goals in ultrasensitive imaging and sensing technologies."

Explore further: Tiny diamond sparklers may hold the key to big advances in biomedical imaging technology

Related Stories

A new spin in diamonds for quantum technologies

December 20, 2011

(PhysOrg.com) -- To explore the future potential of diamonds in quantum devices, researchers from Macquarie University have collaborated with the University of Stuttgart and University of Ulm in Germany towards developing ...

New scientific research reveals diamonds aren't forever

July 18, 2011

(PhysOrg.com) -- In a paper published in the US journal Optical Materials Express this week, Macquarie University researchers show that even the earth's hardest naturally occurring material, the diamond, is not forever.

Recommended for you

Probe for nanofibers has atom-scale sensitivity

January 20, 2017

Optical fibers are the backbone of modern communications, shuttling information from A to B through thin glass filaments as pulses of light. They are used extensively in telecommunications, allowing information to travel ...

Magnetic recording with light and no heat on garnet

January 19, 2017

A strong, short light pulse can record data on a magnetic layer of yttrium iron garnet doped with Co-ions. This was discovered by researchers from Radboud University in the Netherlands and Bialystok University in Poland. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.