Superconductors that work by themselves: Scientists discover new possibilities in chryoelectronics

December 18, 2012, Kiel University

(—Scientists from the University of Tübingen, working with colleagues from Tel Aviv University and the Kiel University have proposed [1] and experimentally demonstrated [2] a new type of superconducting element – named the φ-Josephson junction. Implemented in cryogenic devices, this element will make superconducting electronic circuits work practically "by themselves" and improve functionality. The scientists have published their results in the journal Physical Review Letters.

A is a quantum mechanical device consisting of two superconductors separated by a very thin (~2nm) barrier. In spite of the barrier, and thanks to , the superconducting electrons in one superconductor "feel" their neighbors in the other superconductor and "synchronize" with them, i.e. behave coherently. This quantum mechanical coherence on a allows using Josephson junctions as very precise sensors of magnetic fields e.g. for medical imaging or as for a scalable quantum computer.

In conventional Josephson junction this "synchronization" of the takes place in-phase i.e., without a phase shift. Recently it became possible to make Josephson junctions where the electrons in two superconductors are "synchronized" anti-phase, i.e., with a phase shift of π. Then one obtains what's known as the π Josephson junction. By combining the properties of conventional and π junctions the scientists from Tübingen, Tel Aviv and Kiel have proposed and demonstrated a Josephson junction with an arbitrary phase shift φ between electrons in two superconductors. The value of φ (0<φ≤π) can be chosen by design. This φ Josephson junction can be used as a device which keeps a constant phase shift between two superconducting electrodes.

"One can think about the φ-junction as a battery, which provides a given phase shift φ (instead of a voltage like in the usual battery) for an attached superconducting electronic circuit. This phase battery, unlike the usual battery, never discharges as it causes the flow of superconducting dissipationless currents," says Prof. Roman Mints (Tel Aviv University), co-author of the idea.

"We have understood how to combine 0 and π junctions and how to prove experimentally that we have obtained a φ junction during my visit to Tel Aviv in 2011", says Dr. Edward Goldobin – the leading scientist in this project. "Further, we discovered that this φ Josephson junction may actually be in two states – it may "synchronize" the with the phase shift being either +φ or -φ and, thus, one can use it as a bistable system or, in the future, as a quantum bit. In our experiments[2], conducted at 300mK (-273 °C), we demonstrated the existence of these two states: we can determine experimentally in which state the junction is, and we can compel the junction to switch to the desired state +φ or to -φ". The value of the phase shift φ can be controlled by the sample parameters such as film thickness. Prior to this work, scientists thought the ground states could not be modified at will.

"The superconductor-ferromagnet-insulator-superconductor technology used to make a φ junction (composite 0-π junction) results from more than a decade of research, and to date exists in no other lab in the world. However, other groups are catching up," says Dr. Martin Weides, who created the nano-engineered thin-film samples. "The key element of our samples is film morphology control down to the atomic scale."

The groups involved in the collaboration are very optimistic about their results and are going to investigate this φ Josephson junction in greater detail, in particular in the quantum domain, within the Collaborative Research Center SFB/TRR-21.

Explore further: Researchers find unusual behavior in Josephson junction superconductor-topological insulator devices

More information: [1] E. Goldobin, D. Koelle, R. Kleiner, R.G.Mints, "Josephson junction with magnetic-field tunable ground state", Phys. Rev. Lett. 107, 227001 (2011).

[2] H. Sickinger, A. Lipman, M. Weides, R. G. Mints, H. Kohlstedt, D. Koelle, R. Kleiner, E. Goldobin, "Experimental evidence of a φ Josephson junction", Phys. Rev. Lett. 109, 107002 (2012).

Related Stories

Einstein's theory applied to superconducting circuits

June 10, 2011

In recent years, UC Santa Barbara scientists showed that they could reproduce a basic superconductor using Einstein's general theory of relativity. Now, using the same theory, they have demonstrated that the Josephson junction ...

One step closer to quantum computers

July 6, 2012

EU researchers have developed novel ways of producing qubits that enhance their efficiency, potentially bringing the world one step closer to the ‘Holy Grail’ of supercomputing.

Quantum oscillator responds to pressure

October 14, 2012

In the far future, superconducting quantum bits might serve as components of high-performance computers. Today already do they help better understand the structure of solids, as is reported by researchers of Karlsruhe Institute ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Dec 18, 2012
"The superconductor-ferromagnet-insulator-superconductor technology used to make a φ junction (composite 0-π junction) results from more than a decade of research, and to date exists in no other lab in the world. However, other groups are catching up," says Dr. Martin Weides

I wonder. When i meet in 2008 with Valerii V Ryazanov, head of Superconductivity Laboratory in Chernogolovka ISSP RAS he was very proud that his group was the first in PI junctions
See for example his rewiew in:
some scans from this rewiers
yellow color by Minich
See also

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.