Experiment confirms existence of odd particle

December 4, 2012 by Kurt Riesselmann, US Department of Energy
Experiment confirms existence of odd particle
CMS experiment. Credit: CERN

Scientists working on the CMS experiment at the Large Hadron Collider have confirmed the existence of an odd, puzzling particle first observed a few years ago at DOE's Tevatron particle collider. Members of the CMS collaboration announced on Nov. 14 that they had spotted the curious object, dubbed Y(4140), which scientists had discovered at the CDF experiment at Fermilab.

The particle has a mass of 4.1 billion electronvolts (GeV) and seems to be related to a handful of X and Y particles previously found at other laboratories. These particles are well measured but poorly understood. They don't fit the common pattern in which quarks and antiquarks bind together to form protons, neutrons, pions and other particles.

Some theorists think that X and Y particles resemble molecular structures. Perhaps they are made of two quark-antiquark pairs bound together for a short period of time. Or they could be something completely different.

With additional data, CMS scientists hope to understand the exact composition of the Y(4140) and get to the bottom of this mystery.

Explore further: Particle oddball surprises physicists

Related Stories

Particle oddball surprises physicists

March 18, 2009

(PhysOrg.com) -- Scientists of the CDF experiment at the Department of Energy's Fermi National Accelerator Laboratory announced yesterday that they have found evidence of an unexpected particle whose curious characteristics ...

Fermilab's CDF observes Omega-sub-b baryon

June 29, 2009

(PhysOrg.com) -- At a recent physics seminar at the Department of Energy’s Fermi National Accelerator Laboratory, Fermilab physicist Pat Lukens of the CDF experiment announced the observation of a new particle, the Omega-sub-b ...

Tevatron experiments close in on favored Higgs mass range

July 21, 2011

(PhysOrg.com) -- Experiments at the Department of Energy’s Fermilab are close to reaching the critical sensitivity that is necessary to look for the existence of a light Higgs particle. Scientists from both the CDF and ...

Recommended for you

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

Designer emulsions

November 15, 2018

ETH material researchers are developing a method with which they can coat droplets with controlled interfacial composition and coverage on demand in an emulsion in order to stabilise them. In doing so they are fulfilling ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1 / 5 (3) Dec 05, 2012
The particle has a mass of 4.1 billion electronvolts (GeV) and seems to be related to a handful of X and Y particles previously found at other laboratories. These particles are well measured but poorly understood. They don't fit the common pattern in which quarks and antiquarks bind together to form protons, neutrons, pions and other particles….


May be they are not true particles (something like electrons), because we do not know their mechanism explaining how it works. But rather they are just 'condensed disturbed vacuum fields'! The reason behind is that conventionally, they are coherent states of vacuum fields (this is why they are unstable). To visualize the mechanism which explains how it works, see…
http://www.vacuum...=9〈=en

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.