NASA sees Tropical Cyclone Evan batter and drench Samoan Islands

December 14, 2012
TRMM data on Dec. 12, 2012 at 1704 UTC revealed several "hot towers" or towering thunderstorms in Cyclone Evan reaching heights of greater than 16.5 km (10.25 miles) within Evan's eye wall. The heaviest rainfall (dark red) of over 80 mm (~3.1 inches) per hour was occurring in heavy rainfall within Evan's clear eye wall. Credit: NASA/SSAI, Hal Pierce

NASA's Tropical Rainfall Measuring Mission or TRMM satellite continues to provide rainfall and cloud height data on powerful Cyclone Evan as it crawls through the Samoan Islands with hurricane-force winds and heavy rains. NASA's TRMM satellite identified "hot towers" in the storm, hinting that it would continue to intensify.

On Dec. 14, American Samoa, Tonga and Fiji are all under warnings or alerts as Evan continues to move west. A gale warning is in effect for Tutuila and Aunuu. A high surf warning is in effect for all of American Samoa. A flash flood watch is in effect for Tutuila and Manua. A tropical cyclone alert is in force for Niuafo'ou and Fiji.

The TRMM satellite had an excellent view of tropical cyclone Evan on Dec. 12, 2012 at 1704 UTC when it was battering the with hurricane force winds. Evan is predicted by the Joint (JTWC) to intensify and have winds of 130 knots (~150 mph) while remaining close to the islands. This wind speed would make it a strong Category 3 storm on the Saffir-Simpson Scale. A storm surge of 4.5 meters (14 feet) was already reported along the Samoan coast.

Evan's rainfall was analyzed using TRMM's Microwave Imager (TMI) and (PR) data. This analysis showed that the heaviest rainfall of over 80 mm (~3.1 inches) per hour was occurring in heavy rainfall within Evan's clear eye wall. Strong bands of thunderstorms were seen wrapping into the low level center of circulation.

The video will load shortly
TRMM data on Dec. 12, 2012 at 1704 UTC revealed several "hot towers" or towering thunderstorms in Cyclone Evan reaching heights of greater than 16.5 km (10.25 miles) within Evan's eye wall. Credit: NASA/SSAI, Hal Pierce

TRMM's Precipitation Radar (PR) data sliced through Evan and were used to provide the 3-D cut-a-way view looking at Evan's northern side. The imagery clearly showed the vertical side surface of Evan's well-defined eye.

revealed several "hot towers" or towering thunderstorms reaching heights of greater than 16.5 km (10.25 miles) within Evan's eye wall. A "hot tower" is a tall cumulonimbus cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere which extends approximately nine miles (14.5 km) high in the tropics.

These towers are called "hot" because they rise to such altitude due to the large amount of latent heat. Water vapor releases this latent heat as it condenses into liquid. NASA research shows that a tropical cyclone with a hot tower in its eyewall was twice as likely to intensify within six or more hours, than a cyclone that lacked a hot tower.

On Dec. 14 at 1500 UTC (10 a.m. EST) Cyclone Evan had maximum sustained winds near 100 knots (115 mph/185 kph). Cyclone-force winds extend 35 nautical miles (40 miles/64.8 km) out from the center, while tropical-storm-force winds extend up to 105 miles (120.8 miles/194.5 km) from the center.

Evan was centered about 135 nautical miles (155.4 miles/250 km) northwest of Pago Pago, American Samoa, near 12.9 south latitude and 172.5 west longitude. Evan was moving slowly west at 5 knots. Evan is creating very rough seas with waves up to 32 feet (9.7 meters) high. Evan is a threat to American Samoa, Tonga and Fiji.

Evan is moving west away from American Samoa and will later turn southwest, away from American Samoa and is expected to continue to intensify as it moves just north-northwest of Fiji through Dec. 19.

Explore further: NASA sees intensifying tropical cyclone moving over Samoan Islands

Related Stories

NASA sees hot towers as Tropical Storm Fabio's trigger

July 12, 2012

NASA research has indicated whenever "Hot Towering" thunderstorms are spotted within a tropical cyclone, it is more likely to strengthen. NASA's TRMM satellite saw hot towers within newborn Tropical Depression 06E when it ...

TRMM satellite sees hot towers in Cyclone Koji

March 9, 2012

Hot towers, or towering thunderclouds that give off an excessive amount of latent heat, usually indicate a tropical cyclone will strengthen in six hours, and NASA's TRMM satellite saw some of them as it passed by Tropical ...

Recommended for you

Multinationals act on ocean-clogging plastics

January 16, 2017

Forty of the world's biggest companies assembled in Davos agreed on Monday to come up with cleaner ways to make and consume plastic as waste threatens the global eco-system, especially in oceans.

Tracking Antarctic adaptations in diatoms

January 16, 2017

Diatoms are a common type of photosynthetic microorganism, found in many environments from marine to soil; in the oceans, they are responsible for more than a third of the global ocean carbon captured during photosynthesis. ...

Study tracks 'memory' of soil moisture

January 16, 2017

The top 2 inches of topsoil on all of Earth's landmasses contains an infinitesimal fraction of the planet's water—less than one-thousandth of a percent. Yet because of its position at the interface between the land and ...

How the darkness and the cold killed the dinosaurs

January 16, 2017

66 million years ago, the sudden extinction of the dinosaurs started the ascent of the mammals, ultimately resulting in humankind's reign on Earth. Climate scientists have now reconstructed how tiny droplets of sulfuric acid ...

Soil pores, carbon stores, and breathing microbes

January 16, 2017

Researchers at the Pacific Northwest National Laboratory (PNNL) recently studied how moisture influences soil heterotrophic respiration. That's the breathing-like process by which microbes convert dead organic carbon in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.