

Explained: Graphs

December 17 2012, by Larry Hardesty

Graph theory is generally thought of as originating with the "Königsberg bridge
problem," which asked whether a walker could cross the seven bridges of
Königsberg, Prussia (now Kaliningrad, Russia), once each without crossing any
of them twice. This is the graphical depiction of the problem, where the nodes
represent land masses and the edges bridges. Image: Wikimedia
Commons/Horatius

When most people hear the word "graph," an image springs to mind: a
pair of perpendicular lines overlaid with a line, a curve, or bars of

1/4

different heights.

But when computer scientists use the term, they often have something
very different in mind. The most familiar example of a graph, in the
computer-science sense, may be a network diagram, with computers or
routers depicted as circles and the connections between them depicted as
line segments. But graphs can represent all kinds of things, from
sequences of decisions to relationships between data in a database, and
they play a crucial role in a huge number of algorithms.

Technically, a graph consists of two fundamental elements: nodes (or
vertices, usually depicted as circles) and edges (usually depicted as lines
connecting nodes). Often, in computer science, the edges are "weighted":
Associated with each edge is a number that indicates the ease or
difficulty of traversing it. The weight of an edge could, for instance,
represent the bandwidth of a wired connection in a network, or it could
represent the cost—in money, computational resources or something
else—in moving from one step to the next in some process.

Mathematicians have developed a handful of standard techniques for
describing graphs: The weights of edges, for instance, can be depicted in
a big table that maps every node against every other. In computer
science, the challenge posed by graphs generally lies in their analysis, not
their representation. Sometimes that analysis requires careful
consideration of the data represented by each node. Other times, the
point of graphic analysis is precisely to abstract away from the data: The
useful information is some general property of the network as a whole.

A glance at some recent MIT News articles provides, to coin a phrase,
graphic evidence of the importance of graphs. Last month, MIT
professor of mathematics Peter Shor, his former student Ramis
Movassagh and their colleagues published a paper demonstrating
properties of physical systems that could make them useful for quantum

2/4

https://phys.org/tags/computer+scientists/
https://phys.org/tags/graph/
https://phys.org/tags/routers/
https://phys.org/tags/sequences/
https://phys.org/tags/computational+resources/

computing. Their proof relied, in part, on graphs whose nodes
represented the quantum states of physical systems; edges connected
states that could be reached from each other with no change in energy.
There, the crucial revelation was that the graph was highly connected:
There were no bottlenecks that transitions between states had to traverse.

An August paper by Alvin Cheung, a graduate student in the Department
of Electrical Engineering and Computer Science; his advisor, professor
of computer science and engineering Sam Madden; and colleagues at
Cornell University describes an algorithm that uses graphs to represent
discrete instructions in computer programs. Like Shor and Movassagh,
Cheung and Madden were looking at edges, not nodes. But unlike Shor
and Movassagh, they were using a weighted graph, where the edges
depicted the amount of data that each new instruction inherited from the
last. Cheung and Madden's algorithm automatically splits a computer
program up so that it can run on multiple servers; by identifying edges
with low weights, it minimizes the data that has to pass between servers,
improving efficiency.

Finally, in another paper that appeared last month, Daniela Rus, a
professor of computer science and engineering and director of MIT's
Computer Science and Artificial Intelligence Laboratory, her postdoc
Dan Feldman, and Cynthia Sung, a graduate student in her group,
described an algorithm that uses a particular type of graph called a tree.
There, the interest was all in the nodes, not the edges. The most familiar
example of a tree may be a family-tree diagram, which has a single node
at the top and fans out at successive layers of depth. In the Rus group's
algorithm, the bottom layer of the tree represented raw GPS data, and all
the other nodes represented compressed versions of the data contained in
the nodes beneath them.

That's just a few recent examples. Many algorithms model decision
problems as graphs: For instance, a chess-playing algorithm might treat a

3/4

http://phys.org/news/2012-08-web-applications-efficient.html
http://phys.org/news/2012-08-web-applications-efficient.html
https://phys.org/tags/algorithm/
http://phys.org/news/2012-11-algorithms.html
http://phys.org/news/2011-02-retooling-algorithms.html

game of chess as a tree in which each node represents a state of the
board, and the nodes beneath it represent possible moves. Others use
weighted graphs to depict the strength of the correlations between data
points in a database. Some major advances in computer science involve
problems that are specified using graphs in the first place, such as the
"max-flow" problem, which is at the heart of a huge range of logistical
analyses. And that's to say nothing of perhaps the most intuitive use of
graphs, in the analysis of communication networks.

 More information: OpenCourseWare: "Introduction to Graph
Theory"—ocw.mit.edu/courses/mathematic … pring-2005/index.htm

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Explained: Graphs (2012, December 17) retrieved 12 May 2024 from
https://phys.org/news/2012-12-graphs.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

https://phys.org/tags/computer+science/
http://phys.org/news204806137.html
http://phys.org/news/2012-05-elusive-capacity-networks.html
http://ocw.mit.edu/courses/mathematics/18-315-combinatorial-theory-introduction-to-graph-theory-extremal-and-enumerative-combinatorics-spring-2005/index.htm
http://web.mit.edu/newsoffice/
https://phys.org/news/2012-12-graphs.html
http://www.tcpdf.org

