Researchers disprove familiar scientific assumptions that could result in better materials design

November 21, 2012
This game-changing research graced the cover of Chemical Science.

(—In an unprecedented find, a research team including scientists from Pacific Northwest National Laboratory discovered that the three electronic and electrochemical properties having to do with the energy necessary for electrons and molecules to assemble or break apart are not always correlated. This lack of correlation is unexpected and suggests possible explanations for observed differences in organofluorine materials. These popular materials are composed of carbon and fluoride; uses include photovoltaic devices, which turn sunlight into electricity. The research graced the May 2012 cover of Chemical Science.

"It surprised us that for this series of compounds, there is no correlation," said Dr. Xue-Bin Wang, a scientist at PNNL who previously held a joint appointment with the Laboratory and Washington State University. "This research has changed the ."

The grand challenge is to make materials that efficiently capture sunlight and generate electricity. This research is providing fundamental knowledge about the relationship between and molecular structure of materials that could be used in . Further, this new understanding can help scientists design materials with specialized electronic, optical, magnetic, or other properties.

The discovery by scientists from Montana State University, Pacific Northwest National Laboratory, DOE Joint Genome Institute, and Indiana University shows the power of metagenome sequencing to discover and characterize previously unknown microbes present in unusual niches. Identification of these novel organisms is critical to understanding microbial community structure and function in thermophilic mats and will give insight to the evolution of Archaea in environments that may have important analogs in YNP today.

Previously, it was thought that simple linear equations related three electronic and . However, the equations did not always predict the outcomes seen in the laboratory. Scientists in the United States and Germany collaborated to determine the relationship between the properties. Researchers at Colorado State University synthesized seven different—yet structurally similar—organofluorine compounds. Each compound has a different carbon-fluorine group attached to a buckyball—a special arrangement of carbon atoms shaped like a soccer ball.

The team investigated the electronic and electrochemical properties of each compound using spectroscopic, computational, and electrochemical methods. The team at Colorado State measured the electrochemical properties of each compound in the solution phase. At Argonne National Laboratory, they used the Advanced Photon Source to characterize the critical structure for one of the seven compounds.

At PNNL, researchers measured the electrochemical properties of each compound in the gas phase using photoelectron spectroscopy, located in EMSL. Construction of this spectrometer was wholly funded by DOE's Office of Basic Energy Sciences. "The research team came to us because we had this unique capability," said Wang. "We are continuing to collaborate with them because of the capabilities at EMSL."

The German institutes, Dresden University of Technology and Liebniz Institute for Solid State and Materials Research, completed advanced computational studies and density functional theory calculations to elucidate the behavior of the electrons. The researchers found that electron affinities, reduction potentials, and E(LUMO) values are not always correlated.

The researchers are now working to determine how electron affinity changes when solvent molecules are attached to the organofluorine compounds in the gas phase.

Explore further: Calling familiar assumptions into question results in better materials design

More information: Kuvychko, I., et al., Substituent Effects in a Series of 1,7-C60(RF)2 Compounds (RF = CF3, C2F5, n-C3F7, i-C3F7, n-C4F9, s-C4F9, n-C8F17): Electron Affinities, Reduction Potentials and E(LUMO) Values Are Not Always Correlated. Chemical Science 3(5):1399-1407. DOI: 10.1039/c2sc01133f

Related Stories

Rewriting the Organofluorine Playbook

June 26, 2012

( -- Sometimes it is easy to overgeneralize, to conclude that simply because a group of things are pretty much all the same, they're identical in all respects, even interchangeable. But such assumptions can cause ...

Research provides new insights into actinide

August 10, 2012

( -- A team of DOE researchers from the Laboratory, Lawrence Berkeley and Los Alamos national laboratories and SLAC National Accelerator Laboratory, studying the fundamental properties of the actinide elements, has ...

The origin of organic magnets

March 2, 2012

Electrical engineers are starting to consider materials made from organic molecules -- including those made from carbon atoms -- as an intriguing alternative to the silicon and metals used currently in electronic devices, ...

Computational actinide chemistry: Are we there yet?

August 21, 2007

Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of ...

Elusive metal discovered

August 22, 2012

Carnegie scientists are the first to discover the conditions under which nickel oxide can turn into an electricity-conducting metal. Nickel oxide is one of the first compounds to be studied for its electronic properties, ...

Recommended for you

Life's building blocks observed in spacelike environment

December 12, 2017

Where do the molecules required for life originate? It may be that small organic molecules first appeared on earth and were later combined into larger molecules, such as proteins and carbohydrates. But a second possibility ...

Teaching antibiotics to be more effective killers

December 12, 2017

Research from the University of Illinois at Chicago suggests bond duration, not bond tightness, may be the most important differentiator between antibiotics that kill bacteria and antibiotics that only stop bacterial growth.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 22, 2012
Chemistry denialists will now claim that the basics of chemistry are now all wrong, that Chemists know nothing, and assert their ideological belief that chemical interactions are really mediated by tiny angels under the direction of God.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.