Researchers test a fatigue management program which is successful at controlling space-age jetlag

September 28, 2012

Since the beginning of August, NASA's Mars rover, Curiosity, has been roaming all over the distant planet learning as much as it can about the Martian terrain. The mission control team back on Earth has also learned what it may be like on Mars by trying to live and work on a Martian day, which is about 40 minutes longer than an Earth day. This 'day' length causes havoc with the internal 24-hour body clock but researchers at Brigham and Women's Hospital (BWH) have developed and tested a fatigue management program which is successful at controlling this space-age jetlag. The results of the study will be published electronically on September 28, 2012 and will be published in the October print issue of SLEEP.

Mission controllers investigating the are required to communicate with the rover on Martian time. This unusual schedule poses a great challenge as our has evolved to expect a 24-hour light-dark, not a 24.65 h 'day', making it difficult to sleep, wake and work. "Our study, which was conducted during the mission, investigated the effectiveness of a pilot program to educate the mission personnel on how to reset their body clocks more quickly and how to improve their sleep, alertness and performance," explained Steven W. Lockley, PhD, neuroscientist at BWH, and senior investigator on this study.

The research team studied 19 scientific and technical personnel supporting the mission for more than 11 weeks. The participants were assessed using a sleep/work diary, continuous wrist actigraphy, and regular performance tests. A subset of the study participants were also given portable blue-light light boxes to place at their workstations to help reset their internal and improve their performance. The researchers found that most of the participants were able to synchronize to a Martian day schedule.

"While adapting the human sleep-wake and performance cycle to a 24.65 hour day is a substantial challenge, our study has provided the foundation to develop comprehensive fatigue management programs for future missions, which may eventually include manned missions to Mars," explained Laura Barger, PhD, an associate physiologist at BWH and principal investigator of the study. "Such a program could decrease the risk of fatigue-related mistakes during these high profile and expensive missions."

Researchers suggest that these findings may also prove helpful to other groups that work on unusual 'day-lengths' such as submariners who have traditionally lived on an 18-hour day.

Explore further: Too little sleep, disrupted internal clock means higher risk of diabetes and obesity

Related Stories

Ice Cold Sunrise on Mars

August 27, 2008

(PhysOrg.com) -- From the location of NASA's Phoenix Mars Lander, above the Martian arctic circle, the sun does not set during the peak of the Martian summer.

Recommended for you

Four new short-period giant planets discovered

July 26, 2017

(Phys.org)—Astronomers have detected four new giant exoplanets as part of the Hungarian-made Automated Telescope Network-South (HATSouth) exoplanet survey. The newly found alien worlds are about the size of Jupiter, but ...

Large, distant comets more common than previously thought

July 25, 2017

Comets that take more than 200 years to make one revolution around the sun are notoriously difficult to study. Because they spend most of their time far from our area of the solar system, many "long-period comets" will never ...

Saturn surprises as Cassini continues its grand finale

July 24, 2017

As NASA's Cassini spacecraft makes its unprecedented series of weekly dives between Saturn and its rings, scientists are finding—so far—that the planet's magnetic field has no discernable tilt. This surprising observation, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.