
 

A better way to store data

September 6 2012, by Douglas Gantenbein

These days, nearly everyone stores things in the "cloud"—business-
critical documents, personal photos, e-mail accounts … everything.

Microsoft introduced Windows Azure Storage in 2008. Since then, that
cloud offering has gained widespread use, not only within Microsoft, but
also by thousands of external customers, and it currently stores more
than 4 trillion objects.

Storing massive amounts of information in the cloud comes with costs,
however—primarily, the cost of storing all that digital data. Now a
Microsoft Research team, working with members of the Windows Azure
Storage group, has developed a powerful mathematical tool that
significantly reduces the amount of space stored data requires. That, in
turn, slashes the cost of storing that data, saving Windows Azure Storage
millions of dollars.

The work focuses on a particular challenge within the cloud: managing
data to help keep it safe and secure while minimizing the amount of 
storage space it requires. That's a big challenge. For enterprises and
people to trust their valuable data to the cloud, they need a high degree
of confidence that their data will be safe. Anyone storing that data,
meanwhile, wants to keep costs low.

The easiest way to provide integrity for data is to duplicate it. Three full
copies typically are enough to keep the data safe and durable in the event
of server failures—and servers will, in time, fail. But obviously,
duplication uses a lot of storage. In the case of keeping three full copies,

1/6

http://blogs.msdn.com/b/windowsazurestorage/
https://phys.org/tags/mathematical+tool/
https://phys.org/tags/storage+space/


 

the storage cost, or "overhead," is simply the whole number: Three.

Microsoft Research, combined with the Windows Azure team, took a
new approach to reducing storage demands. The team included Cheng
Huang and Jin Li from Microsoft Research Redmond, Parikshit Gopalan
and Sergey Yekhanin from Microsoft Research Silicon Valley, and
Huseyin Simitci, Yikang Xu, Aaron Ogus, and Brad Calder from
Windows Azure Storage.

The team built on a common approach to keeping data accessible and
durable while requiring less space. That approach is to "code" the
data—in effect, create a shortened description of the data, so that it can
be reassembled and delivered to a user.

Windows Azure Storage condenses stored data with a technique called
"lazy erasure coding." The name comes from the way coding works in
background, not in the critical write path. When a data chunk—called an
"extent"—is opened and filled, it is duplicated with three full copies.
When it is sealed, erasure coding is launched in the background, when
the data-center level is low. The extent is split into equal-sized data
fragments, coded to generate a number of parity fragments, with each of
the data fragments and parity fragments being stored in a different
physical unit strategically placed so that the failure of any single module
in a data center—be it a power unit, a switch, a computer, or a
disk—will affect only one data or parity fragment. Once the data is
erasure-coded and all data and parity fragments are distributed, all three
original copies can be deleted. Since the entire-erasure coding operation
is performed in the background, it leads to minimum impact in
performance.

A well-understood way to perform the erasure-coding operation is called
Reed-Solomon coding, which was devised in 1960 and was used in the
U.S. space program to reduce communications errors. It also helped

2/6



 

made compact discs possible by catching errors in the discs' digital
coding. For example, by using 6+3 Reed Solomon code, which converts
three copies of data to nine fragments—six data and three parity, each ⅙
the size of the original data—it cuts the data footprint in half, to an
overhead cost of 1.5, resulting in not only half the necessary servers, but
also half the power usage and half the physical server space. Lazy
erasure coding leads to big cost savings.

Coding data has a cost: It slows performance for servers to reassemble
data from code, much as it might take a person longer to read a sentence
in which every other letter is missing. Data retrieval also can be slowed
if a data fragment is stored on a hard disk that has failed or is on a server
that is temporarily offline while being upgraded. This is why the goal of
this new approach is to reduce the time and cost of performing data
retrieval, especially during hardware failures and common data-center
operations such as software upgrades. In addition to reducing data-
retrieval time, the goal of the new approach is to perform lazy erasure
coding that enables even greater data compression—reducing the data-
storage overhead to 1.33 or lower.

The team sought to achieve this with minimal performance losses. Just to
achieve storage overhead of 1.33, it is possible to use a 12+4 Reed-
Solomon coding, which splits the extent into 12 fragments, deriving four
parity fragments that protect the 12 original ones, each 1/12 size of the
original data.

"But there is an undesirable effect," Li says. "If a piece of data fails, you
will need to read 12 fragments to reconstruct the data. That leads to 12
disk I/O actions and 12 network transfers, and that's expensive, double
the disk I/O actions and network transfers needed in 6+3 Reed-Solomon
coding."

Huang explains further.

3/6



 

"Encoding and decoding is just one of many operations done in cloud-
storage systems," he says. "If you spend a lot of computational resources
on that," he says, "then it eats into other operations—data compression,
encryption, de-duplication, cleaning up redundant data, and other
things."

Reed-Solomon coding is designed for deep space communication, in
which error occurs commonly and equally to both data and parity
symbols and the design tenet is to tolerate as many errors as possible
given a certain overhead. The error pattern in the data center behaves
differently from that of deep space communication. First, a well-
designed and -monitored data center has a low hard-failure rate. That
means that most of the extents in the data center are healthy, with no
failed data fragment. Only a small number of extents have one failed
data or parity fragment. The extents with two or more failed data or
parity fragments are rare and will only appear for a short duration, as the
data center will repair those extents quickly and bring them to healthy
state. Second, if a data fragment cannot be accessed, the predominant
reason is a temporary error caused by a system upgrade, load balancing
across servers, or other routine operations.

Built upon the rich mathematical theory of locally decodable codes and
probabilistically checkable proofs, this new approach is called Local
Reconstruction Codes (LRCs) and enables data to be reconstructed more
quickly than with Reed-Solomon codes, because fewer data fragments
must be read to re-create the original data in the majority of the failure
patterns. In fact, only half the fragments are required—six, rather than
12. In addition, LRCs are much simpler mathematically than prior
techniques, resulting in a smaller Galois field—a mathematical construct
that reflects the complexity of the operations used to combine the data
pieces.

The "local" in the coding technique's name refers to the concept that, in

4/6



 

the event of a fragment being offline, as for a server failure or an
upgrade, the code needed to reconstruct data is not spread across the
entire span of a data center's servers.

"The data needs to be available quickly, without reading too much data,"
Yekhanin says. "That's where the notion of locality comes from."

The new coding approach also meets the two main criteria of data
storage: Data needs to be reliably stored so it is durable, and it needs to
be readily available. Data durability is excellent with LRCs—a data
chunk can have three failures and still be rebuilt with 100 percent
accuracy. In the unlikely event of four failures, the success rate to
rebuild drops to 86 percent. LRC code has better durability than triple-
replica and 6+3 Reed-Solomon code.

Best of all, the new coding approach results in a data overhead of
1.29—a 14 percent reduction over Reed-Solomon code's overhead of
1.5. That's perhaps not a huge gain in itself, but spread over the
enormous amounts of data contained in Windows Azure Storage, it's
significant.

"The new Local Reconstruction Codes allow us to achieve our target
storage overhead to keep our storage prices low," says Calder, a
Microsoft distinguished engineer. "LRCs provide faster reconstruction
times over prior known codes, while still providing the durability we
need with low storage overhead."

LRCs represent a significant achievement in information theory and
storage design, and the work was awarded the Best Paper award during
the 2012 USENIX Annual Technical Conference, for Erasure Coding in
Windows Azure Storage.

LRCs could find wide application in computing. Li says one possible use

5/6

https://www.usenix.org/conference/usenixfederatedconferencesweek/erasure-coding-windows-azure-storage
https://www.usenix.org/conference/usenixfederatedconferencesweek/erasure-coding-windows-azure-storage


 

for them may be in "flash appliances"—devices made by combining
several flash-memory drives. These memory devices are fast but require
a special process called "garbage collection" to clean up old or unused
data. LRCs could help improve this process, because their design enables
the flash memory to operate efficiently even during garbage collection.

This work shows the strength of Microsoft's diversity, from theoretical
computer scientists such as Gopalan and Yekhanin, to communications
and multimedia experts such as Huang and Li in Microsoft Research, to
distributed storage and systems experts as Simitci, Xu, Ogus, and Calder
in Windows Azure Storage.

"It shows how broad the organization is," Yekhanin says. "We have lots
of people working in lots of different areas, and they can connect to
create some amazing technology."

Provided by Microsoft Research

Citation: A better way to store data (2012, September 6) retrieved 17 July 2024 from 
https://phys.org/news/2012-09-a-better-way-to-store.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

https://phys.org/news/2012-09-a-better-way-to-store.html
http://www.tcpdf.org

