

Making Web applications more efficient

August 31 2012, by Larry Hardesty

Graphic: Christine Daniloff

Most major websites these days maintain huge databases: Shopping sites
have databases of inventory and customer ratings, travel sites have
databases of seat availability on flights, and social-networking sites have
databases of photos and comments. Almost any transaction on any of
these sites requires multiple database queries, which can slow response
time.

1/6

This week, at the 38th International Conference on Very Large
Databases—the premier database conference—researchers from MIT's
Computer Science and Artificial Intelligence Laboratory presented a
new system that automatically streamlines websites' database access
patterns, making the sites up to three times as fast. And where other
systems that promise similar speedups require the mastery of special-
purpose programming languages, the MIT system, called Pyxis, works
with the types of languages already favored by Web developers.

Alvin Cheung, a graduate student in the Department of Electrical
Engineering and Computer Science (EECS), is first author on the paper.
He's joined by his advisor, EECS professor Sam Madden, and by Owen
Arden and Andrew Myers of Cornell University's Department of
Computer Science.

A Web-services transaction typically involves both data retrieval—say,
the flights on a given route with available seats—and computation—say,
whether the difference in flight times would allow the traveler to make a
connection. Typically, data is stored on one server, and the computation,
or "application logic," is executed on another. The application server and
the database might have to exchange information multiple times only to
conclude that, no, a given itinerary won't work.

But if a few frequently used chunks of application logic could run on the
database server instead, it would save time, by limiting the number of
cross-server transactions, and bandwidth, since the sole remaining
transaction could be sending the single bit of information "no."

But application logic and database queries are generally written in very
different languages, which are optimized to handle different types of
operations, so moving code to the database can require not only rewriting
it, but also rethinking the way it's implemented. And it's difficult to split
a program in two without introducing bugs —without, say, losing track

2/6

https://phys.org/tags/programming+languages/
https://phys.org/tags/web+developers/

of which server needs to modify which variable at which point.

Finally, even if the programmer invests the time to establish that the
partitioning of the program won't introduce errors, there's still the
difficulty that the demands on the database server are constantly
changing. During normal operation, the database server's CPU may have
plenty of capacity to handle a little application logic. But a sudden spike
in traffic could so burden the CPU that the extra computation puts it
over its limit, causing much worse delays than shuttling data between
application and database would.

Graphic results

Pyxis solves all three problems. It automatically partitions a program
between application server and database server, and it does it in a way
that can be mathematically proven not to disrupt the operation of the
program. It also monitors the CPU load on the database server, giving it
more or less application logic to execute depending on its available
capacity.

Pyxis begins by transforming a program into a graph, a data construct
that consists of "nodes" connected by "edges." The most familiar
example of a graph is probably a network diagram, in which the nodes
(depicted as circles) represent computers, and the edges (depicted as
lines connecting the circles) represent the bandwidth of the links
between them. In this case, however, the nodes represent individual
instructions in a program, and the edges represent the amount of data
that each instruction passes to the next.

"The code transitions from this statement to this next statement, and
there's a certain amount of data that has to be carried over from the
previous statement to the next statement," Madden explains. "If the next
statement uses some variable that was computed in the previous

3/6

statement, then there's some data dependency between the two
statements, and the size of that dependency is the size of the variable." If
the whole program runs on one computer, then the variable is stored in
main memory, and each statement simply accesses it directly. But if
consecutive statements run on separate computers, the data has to make
the jump with them.

"There's some cost to shipping data across the network, and there's some
cost to every network round-trip that you do," Madden says. "So we want
to find a placement of these nodes on the two different servers that
minimizes the overall cost—or overall runtime—of the program."

In fact, Cheung adds, Pyxis finds several such placements of the nodes,
some that push more computation to the database server and some that
push less. "Our tool is able to dynamically switch between them based on
the current load on the server," Cheung says.

Benchmarking

In experiments involving a standard set of simulated database
transactions, Pyxis was three times as fast as a typical implementation,
while cutting the bandwidth consumed almost in half. Moreover, the
improvements it afforded were within a few percent of those that
resulted from careful optimizations hand-coded by software engineers.

At the moment, Pyxis works with programs written in Java, which
Madden says is the language favored by many commercial Web
developers. But adapting it to other popular languages would require
revising only the code that translates programs into graphical models; the
rest of the system would remain the same.

"Usually, partitioning systems are automated, not automatic—automated
in the sense that some programmer input is taken into consideration, and

4/6

then the system handles some of the more difficult aspects of the
partitioning process," says Eli Tilevich, an associate professor of
computer science at Virginia Tech. With Pyxis, however, "they partition
things completely automatically, without requiring any user input."

"They have an program-analysis technique, called a partition graph,"
Tilevich adds, "which is an interesting innovation that has not been
applied to prior systems." And while even successful academic research
projects usually require a lot of work before they're ready for
commercial implementation, Tilevich says, "their ideas, their
technologies, certainly have commercial applicability."

In ongoing work, the four researchers on the Pyxis paper are
collaborating with Armand Solar-Lezama, an assistant professor of
computer science and electrical engineering at MIT, to make it even
easier to streamline database-dependent Web applications. Most
databases are written in so-called declarative languages such as SQL,
which allow programmers to issue high-level commands, such as finding
the largest value of some variable, without specifying a computational
approach. The database system then automatically chooses the most
efficient algorithm for executing the command, depending on the data
characteristics.

Web programmers who are better-versed in Java than SQL will
sometimes move large batches of data from the database to the
application server, only to perform operations on it that SQL would have
done more efficiently anyway. The researchers are developing a system
that builds on Pyxis, dubbed StatusQuo, that can identify such inefficient
application logic. It then automatically converts the application code into
a SQL query, which the database then executes by whatever means it
deems most efficient.

 More information: people.csail.mit.edu/akcheung/papers/vldb12.html

5/6

https://phys.org/tags/database/
http://people.csail.mit.edu/akcheung/papers/vldb12.html

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Making Web applications more efficient (2012, August 31) retrieved 24 April 2024
from https://phys.org/news/2012-08-web-applications-efficient.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

http://web.mit.edu/newsoffice/
https://phys.org/news/2012-08-web-applications-efficient.html
http://www.tcpdf.org

