

Computer scientists explore secure browser
design

August 10 2012

Quark load times for the Alexa Top 10 Web sites, normalized to stock WebKit’s
load times. In each group the blue bar shows the unoptimized load time, the
black bar shows load time in final, optimized version of Quark, and center bars
show how additional optimizations improve performance.

(Phys.org) -- University of California, San Diego computer scientists
explored a new approach to secure browser design in a paper presented
in August 2012 at the 21st USENIX Security Symposium, the foremost
research conference on computer network security. The authors are
computer science professor Sorin Lerner and computer science Ph.D.
students Dongseok Jang and Zachary Tatlock.

Over the past 15 years, Web-based applications have become
commonplace. They are used for a wide variety of activities, from
interacting with a bank or healthcare provider to managing business
functions or spending leisure time interacting on a social network. As a

1/5

result of this ubiquity, hackers have learned to exploit security flaws in
order to access the wealth of private information tracked and accessed
by Web browsers. Indeed, security breaches have become so frequent
that there are now annual competitions where security experts show off
their hacking chops by breaking into the latest versions of browsers, and
companies such as Google pay cash prizes to people who report bugs that
pose a security threat.

Because users generally want a browser that is trustworthy, secure
browsing is a high priority for software developers. Yet current browsers
are in fact very fragile. They are complex pieces of software with rich
features that allow for flexibility and programmability, and even small
bugs can make the browser vulnerable to attack. Indeed, browser
vulnerabilities have been used to infiltrate the internal networks of
American defense contractors and leading tech firms. Attempts to
improve browser security are often ad-hoc engineering efforts; and even
when formal guarantees are provided, they come in the form of proofs
over a model or idealization of the browser, not the browser itself. A
buggy implementation can invalidate intended guarantees and still leave
users open to attack.

Jang and Tatlock, the computer science Ph.D. students, also previewed
their work in a presentation to the first Center for Networked Systems
(CNS) Security Day in May 2012. They explained that previous
verification techniques for browser security operate on a model or
abstraction of the browser, and not on its actual implementation. This
has created what Tatlock calls a ‘formality gap’, a discrepancy between
what is verified and what is implemented. It is through this gap that
hackers can infiltrate a browser even if it has been verified using strong
formal methods.

There is one known way to bridge this formality gap: implement the
software in a proof assistant and use the proof assistant’s interactive

2/5

https://phys.org/tags/security+breaches/
https://phys.org/tags/software+developers/

environment to formally prove, in full formal detail, that the software
implementation is correct. More specifically, the programmer defines a
specification stating what the code should do, and then uses the proof
assistant to formally prove that the code in fact satisfies this
specification, beginning with the most basic axioms and then building on
them. Because of the precise way in which the program has been
constructed, and the foundational nature of the proof, this kind of formal
verification provides extremely strong guarantees.

In the past, however, this kind of verification has faced a number of
practical barriers. One of the main challenges is that building formal
proofs for applications with millions of lines of code is extremely time
consuming, if not completely impossible. As a result, programmers using
proof assistants have either restricted themselves to verifying stripped-
down versions of their applications, or have had to expand heroic effort
to perform the proofs, spending much more time and programmer-
power than would be practical.

Jang, Tatlock and Lerner speculated: What if there were ways to make
the proofs easier by restricting the code that must be verified to a few
hundred lines (as opposed to a few million)? The research team devised
a technique, dubbed ‘formal shim verification’, for doing just this.
Formal shim verification says Lerner, consists of “creating a small
browser kernel which mediates access to resources for all other browser
components, and then formally verifying that this browser kernel is
correct in a proof assistant.” In other words, only a small part of the
application that is vulnerable to outside scrutiny and attack will be
verified using a proof assistant.

Following these design parameters, the team created Quark, a Web
browser that uses a kernel-based architecture similar to Google Chrome.
In particular, the heart of Quark is a small kernel responsible for
mediating access to the rest of the application. Unlike Chrome’s kernel,

3/5

however, the Quark kernel has been verified in full formal detail using a
proof assistant, allowing it to make strong guarantees about the security
of the browser. As Jang explains, Quark “exploits formal shim
verification and enables us to verify security properties for a million
lines of code while reasoning about only a few hundred lines of code in
the kernel.” This critical distinction between a verified kernel and the
non-verified components allowed the researchers to incorporate a
number of state-of-the-art implementations into the non-verified parts of
Quark, while still maintaining strong security guarantees. For example,
Quark is able to use the WebKit open-source layout engine, the same
layout engine used in Safari and Chrome. Using such realistic
components has made Quark into a practical and usable browser, which
can successfully run complex pages like Gmail, Google Maps, Facebook
and Amazon.

During the prototyping phase of Quark, one thing became clear: “When
forced to choose between adding complexity to the browser kernel,” says
Jang, “it was always better to keep the kernel as simple as possible.” As a
result, the current version of Quark is in some cases too simplistic. For
example, it does not support some standard features of the Web, such as
third-party cookies, and in some cases it enforces non-standard security
policies. Despite these current limitations, Quark is still capable of
running many complex Web applications, including Facebook and
Gmail.

Tatlock, Jang and Lerner are determined that this is only the first
implementation of Quark. They already have some ideas about how to
include a number of standard browser features without severely
complicating their kernel or having to work through a fundamental
redesign. Concludes Tatlock: “Our approach will handle more standard
policies given design changes to our prototype and further engineering
effort.”

4/5

https://phys.org/tags/google/
https://phys.org/tags/browser/

“Establishing Browser Security Guarantees through Formal Shim
Verification,” by Dongseok Jang, Zachary Tatlock and Sorin Lerner at
University of California, San Diego. Published in Proc. 21st USENIX
Security Symposium, August 2012.

Provided by University of California - San Diego

Citation: Computer scientists explore secure browser design (2012, August 10) retrieved 23 April
2024 from https://phys.org/news/2012-08-scientists-explore-browser.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://goto.ucsd.edu/quark/usenix12.pdf
http://goto.ucsd.edu/quark/usenix12.pdf
https://phys.org/tags/security/
https://phys.org/news/2012-08-scientists-explore-browser.html
http://www.tcpdf.org

