

Writing graphics software gets much easier

August 1 2012, by Larry Hardesty

An image undergoing basic processing steps; exposure adjustments, then noise
reduction, to arrive at the final image (bottom). Graphic: Christine Daniloff

(Phys.org) -- Image-processing software is a hot commodity: Just look at
Instagram, a company built around image processing that Facebook is
trying to buy for a billion dollars. Image processing is also going mobile,
as more and more people are sending cellphone photos directly to the
Web, without transferring them to a computer first.

At the same time, digital-photo files are getting so big that, without a lot
of clever software engineering, processing them would take a painfully
long time on a desktop computer, let alone a cellphone. Unfortunately,
the tricks that engineers use to speed up their image-processing
algorithms make their code almost unreadable, and rarely reusable.

1/5

https://phys.org/tags/software+engineering/
https://phys.org/tags/desktop+computer/
https://phys.org/tags/image+processing/

Adding a new function to an image-processing program, or modifying it
to run on a different device, often requires rethinking and revising it
from top to bottom.

Researchers at MIT’s Computer Science and Artificial Intelligence
Laboratory (CSAIL) aim to change that, with a new programming
language called Halide. Not only are Halide programs easier to read,
write and revise than image-processing programs written in a
conventional language, but because Halide automates code-optimization
procedures that would ordinarily take hours to perform by hand, they’re
also significantly faster.

In tests, the MIT researchers used Halide to rewrite several common
image-processing algorithms whose performance had already been
optimized by seasoned programmers. The Halide versions were typically
about one-third as long but offered significant performance gains —
two-, three-, or even six-fold speedups. In one instance, the Halide
program was actually longer than the original — but the speedup was
70-fold.

Jonathan Ragan-Kelley, a graduate student in the Department of
Electrical Engineering and Computer Science (EECS), and Andrew
Adams, a CSAIL postdoc, led the development of Halide, and they’ve
released the code online. At this month’s Siggraph, the premier graphics
conference, they’ll present a paper on Halide, which they co-wrote with
MIT computer science professors Saman Amarasinghe and Fredo
Durand and with colleagues at Adobe and Stanford University.

Parallel pipelines

One reason that image processing is so computationally intensive is that
it generally requires a succession of discrete operations. After light
strikes the sensor in a cellphone camera, the phone combs through the

2/5

image data for values that indicate malfunctioning sensor pixels and
corrects them. Then it correlates the readings from pixels sensitive to
different colors to deduce the actual colors of image regions. Then it
does some color correction, and then some contrast adjustment, to make
the image colors better correspond to what the human eye sees. At this
point, the phone has done so much processing that it takes another pass
through the data to clean it up.

And that’s just to display the image on the phone screen. Software that
does anything more complicated, like removing red eye, or softening
shadows, or boosting color saturation — or making the image look like
an old Polaroid photo — introduces still more layers of processing.
Moreover, high-level modifications often require the software to go back
and recompute prior stages in the pipeline.

In today’s multicore chips, distributing different segments of the image
to cores working in parallel can make image processing more efficient.
But the way parallel processing is usually done, after each step in the
image-processing pipeline, the cores would send the results of their
computations back to main memory. Because data transfer is much
slower than computation, this can eat up all the performance gains
offered by parallelization.

So software engineers try to keep the individual cores busy for as long as
possible before they have to ship their results to memory. That means
that the cores have to execute several steps in the processing pipeline on
their separate chunks of data without aggregating their results. Keeping
track of all the dependencies between pixels being processed on separate
cores is what makes the code for efficient image processors so
complicated. Moreover, the trade-offs between the number of cores, the
processing power of the cores, the amount of local memory available to
each core, and the time it takes to move data off-core varies from
machine to machine, so a program optimized for one device may offer

3/5

no speed advantages on a different one.

Divide and conquer

Halide doesn’t spare the programmer from thinking about how to
parallelize efficiently on particular machines, but it splits that problem
off from the description of the image-processing algorithms. A Halide
program has two sections: one for the algorithms, and one for the
processing “schedule.” The schedule can specify the size and shape of
the image chunks that each core needs to process at each step in the
pipeline, and it can specify data dependencies — for instance, that steps
being executed on particular cores will need access to the results of
previous steps on different cores. Once the schedule is drawn up,
however, Halide handles all the accounting automatically.

A programmer who wants to export a program to a different machine
just changes the schedule, not the algorithm description. A programmer
who wants to add a new processing step to the pipeline just plugs in a
description of the new procedure, without having to modify the existing
ones. (A new step in the pipeline will require a corresponding
specification in the schedule, however.)

“When you have the idea that you might want to parallelize something a
certain way or use stages a certain way, when writing that manually, it’s
really hard to express that idea correctly,” Ragan-Kelley says. “If you
have a new optimization idea that you want to apply, chances are you’re
going to spend three days debugging it because you’ve broken it in the
process. With this, you change one line that expresses that idea, and it
synthesizes the correct thing.”

Although Halide programs are simpler to write and to read than ordinary
image-processing programs, because the scheduling is handled
automatically, they still frequently offer performance gains over even

4/5

the most carefully hand-engineered code. Moreover, Halide code is so
easy to modify that programmers could simply experiment with half-
baked ideas to see if they improve performance.

“You can just flail around and try different things at random, and you’ll
often find something really good,” Adams says. “Only much later, when
you’ve thought about it very hard, will you figure out why it’s good.”

 More information: The Halide project site:
people.csail.mit.edu/jrk/halide12/

Provided by Massachusetts Institute of Technology

Citation: Writing graphics software gets much easier (2012, August 1) retrieved 23 April 2024
from https://phys.org/news/2012-08-graphics-software-easier.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://people.csail.mit.edu/jrk/halide12/
https://phys.org/news/2012-08-graphics-software-easier.html
http://www.tcpdf.org

