Elusive metal discovered

Elusive metal discovered

Carnegie scientists are the first to discover the conditions under which nickel oxide can turn into an electricity-conducting metal. Nickel oxide is one of the first compounds to be studied for its electronic properties, but until now scientists have not been able to induce a metallic state. The compound becomes metallic at enormous pressures of 2.4 million times the atmospheric pressure (240 gigapascals). The finding is published in Physical Review Letters.

"Physicists have predicted for decades that the nickel oxide would transition from an —a compound that does not conduct electricity—to a metal under compression, but their predictions have not previously been confirmed," remarked team leader Viktor Struzhkin of Carnegie's Geophysical Laboratory. "This new discovery has been a goal in physics that ranks as high as achieving metallic hydrogen, but for metal oxides."

The outer shells of atoms contain what are called valence electrons, which play a large role in electrical and chemical behavior. Metals generally have one to three of these valence electrons, while non-metals have between five and seven. Metals are good conductors of electricity because the valence electrons are loosely bound, so the electrons are free to flow through the material.

is what is called a transition metal oxide, which despite its partially filled outer shell of electrons, remains an insulator. The scientists placed thin crystal samples, no more than one millionth of a meter (micron) thick, into a custom-designed diamond anvil cell. Four thin foil leads were crafted to allow the measurements. The researchers were able to measure declining electronic resistance beginning at 1.3 million atmospheres (130 gigapascals). At 2.4 million atmospheres there was a dramatic, three-order-of-magnitude drop in electronic resistance indicating a change from a semiconducting to a . The metallic part of the material was located in the region of highest compression.

"This finding is certainly important in providing a better understanding of advanced electronic materials," said Alexander Gavriliuk, first author of the publication and a visiting scientist at Carnegie's Geophysical Laboratory. "But it also gets us closer to the ultimate goal of the condensed matter science—improving theory so it can predict the properties of new materials and then guiding their preparation for practical use."


Explore further

A new kind of metal in the deep Earth

Journal information: Physical Review Letters

Citation: Elusive metal discovered (2012, August 22) retrieved 24 June 2019 from https://phys.org/news/2012-08-elusive-metal.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Aug 22, 2012
will the oxide decompose when there is no pressure on it and is there a chance it may be a superconductor?

Aug 23, 2012
NiO is stable at ambient conditions. There are more complex oxides that include Ni and superconduct under the right circumstances, but I'm not aware of superconductivity in pure NiO under experimental conditions tried out so far.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more