Bugs inspire better X-rays: Nanostructures modeled like moth eyes may boost medical imaging

July 3, 2012
(a) This image shows the self-assembly of SiO2 nanoparticles on the top of high index light extraction layer Si3N4, which is deposited on Lu2SiO5:Ce thin film. (b) This is a scanning electron microscope image of the improved bio-inspired moth eye nanostructures with certain degree roughness on the sidewall, which shows interesting nano-on-nano features. Credit: Optics Letters

Using the compound eyes of the humble moth as their inspiration, an international team of physicists has developed new nanoscale materials that could someday reduce the radiation dosages received by patients getting X-rayed, while improving the resolution of the resulting images.

The work, led by Yasha Yi—a professor of the City University of New York, who is also affiliated with Massachusetts Institute of Technology and New York University—was published today in the Optical Society's (OSA) journal, Optics Letters.

Like their Lepidopteran cousins the butterflies, moths have large , made up of many thousands of ommatidia—structures made up of a primitive cornea and lens, connected to photoreceptor cells. But moth eyes, unlike those of butterflies, are remarkably anti-reflective, bouncing back very little of the that strikes them. The adaptation helps the insects be stealthier and less visible to predators during their nocturnal flights. Because of this feature, engineers have looked to the moth eye to help design more efficient coatings for solar panels and antireflective surfaces for military devices, among other applications.

Now Yi and his colleagues have gone a step further, using the moth eye as a model for a new class of materials that improve the light-capturing efficiency of X-ray machines and similar medical imaging devices.

This is a scanning electron microscope image of the eye on a leaf miner moth. Credit: Dartmouth College

In particular, the researchers focused on so-called "scintillation" materials: compounds that, when struck by incoming particles (say, X-ray photons), absorb the energy of the particles and then reemit that absorbed energy in the form of light. In radiographic imaging devices, such scintillators are used to convert the X-rays exiting the body into the visible light signals picked up by a detector to form an image.

One way to improve the output (the intensity of light signals read by the detector, and thus the resolution of the resulting ) is to increase the input—that is, to use a higher x-ray dosage. But that's not healthy for patients because of the increased levels of radiation. An alternative, Yi and colleagues figured, is to improve the efficiency with which the scintillator converts X-rays to light. Their new material does just that.

It consists of a thin film, just 500 nanometers thick, made of a special type of crystal known as cerium-doped lutetium oxyorthosilicate. These crystals were encrusted with tiny pyramid-shaped bumps or protuberances made of the ceramic material silicon nitride. Each protuberance, or "corneal nipple," is modeled after the structures in a moth's eye and is designed to extract more light from the film.

Between 100,000 to 200,000 of the protuberances fit within a 100 x 100 micrometer square, or about the same density as in an actual moth eye. The researchers then made the sidewalls of the device rougher, improving its ability to scatter light and thus enhancing the efficiency of the scintillator.

In lab experiments, Yi and colleagues found that adding the thin film to the scintillator of an X-ray mammographic unit increased the intensity of the emitted light by as much as 175 percent compared to that produced using a traditional scintillator.

The current work, Yi says, represents a proof-of-concept evaluation of the use of the moth-eye-based nanostructures in medical imaging materials. "The moth eye has been considered one of the most exciting bio structures because of its unique nano-optical properties," he says, "and our work further improved upon this fascinating structure and demonstrated its use in medical imaging materials, where it promises to achieve lower patient radiation doses, higher-resolution imaging of human organs, and even smaller-scale medical imaging. And because the film is on the scintillator," he adds, "the patient would not be aware of it at all."

Yi estimates that it will take at least another three to five years to evaluate and perfect the film, and test it in imaging devices. "We will need to work with experts and radiologists for this to be actually used in clinical practice," he says.

The work was done in collaboration with Professors Bo Liu and Hong Chen of Tongji University in Shanghai.

Explore further: Insect eyes inspire improved solar cells

More information: "Giant light extraction enhancement of medical imaging scintillation materials using biologically inspired integrated nanostructures," Optics Letters, Vol. 37, Issue 14, pp. 2808-2810 (2012). www.opticsinfobase.org/ol/abstract.cfm?uri=ol-37-14-2808

Related Stories

Insect eyes inspire improved solar cells

January 20, 2011

(PhysOrg.com) -- The eyes of moths, which allow them to see well at night, are also covered with a water-repellent, antireflective coating that makes their eyes among the least reflective surfaces in nature and helps them ...

Engineers give industry a moth's eye view

November 26, 2007

When moths fly at night, their eyes need to capture all the light available. To do this, certain species have evolved nanoscopic structures on the surface of their eyes which allow almost no light to reflect off the surface ...

Sharpening the focus of microscopes

December 2, 2011

A new advanced imaging scheme—with a resolution ten times better than that of its counterparts to date—can resolve objects as small as atoms1. Previously, the maximum resolution of optical instruments, including ...

Rapid, high-resolution 3-D images of the retina

May 2, 2007

In efforts that may improve diagnoses of many eye diseases, researchers will introduce a new type of laser for providing high-resolution 3-D images of the retina, the part of the eye that converts light to electrical signals ...

Recommended for you

Camera able to capture imagery of an optical Mach cone

January 23, 2017

(Phys.org)—A team of researchers at Washington University in St. Louis has built a camera apparatus capable of capturing moving imagery of an optical Mach cone. In their paper published in the journal Science Advances, ...

Experiment resolves mystery about wind flows on Jupiter

January 23, 2017

One mystery has been whether the jets exist only in the planet's upper atmosphere—much like the Earth's own jet streams—or whether they plunge into Jupiter's gaseous interior. If the latter is true, it could reveal clues ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.