SMU biochemists super-compute a cancer drug

June 7, 2012 By Margaret Allen, Southern Methodist University
Fighting cancer
Prof. John Wise

When chemotherapy fails to halt the spread of cancer, it is typically because new super cells develop resistance to the chemotherapy. Instead of dying off, the cells reject the medicine, are able to pump it out and continue to thrive and reproduce.

Scientists have long tried to find a drug to combat these super cells. Now biochemists Pia Vogel and John Wise in the Department of Biological Sciences in Dedman College are using SMU’s supercomputer to tackle the problem. Vogel and Wise are searching for a drug that will shut off the cell “sump pump” so that chemotherapy can once again be effective. They are collaborating with other researchers at SMU’s Center for Drug Discovery, Design and Delivery.

“This is a desperate situation for people whose cancer returns in an aggressive state,” says Wise, a research associate professor. “We don’t want to knock out this sump-pump system permanently, but would like to find a drug that will inhibit the pump, then allow the body to return to its normal state.”

“If we could search through millions of we could potentially find one that could ‘throw a stick’ in the sump-pump mechanism,” says Vogel, an associate professor. Because testing each one in a lab would be too costly and take a lifetime, they adopted a faster method.

Using simulation software and a of the “sump-pump” protein called P-glycoprotein, they screen potential compounds digitally through SMU’s High Performance Computing (HPC) system. With the computational model, Wise and Vogel can observe on a computer screen how digital compounds are absorbed onto and into the P-glycoprotein model. Compounds that stick or bind instead of being pumped out have potential as an effective .

Creating the P-glycoprotein model was not easy. The structures of P-glycoprotein in mice and bacteria are well understood. But human P-glycoprotein remains a mystery and is highly unstable in the lab. Wise designed the computational model by deducing and inferring characteristics from what is known about human P-glycoprotein.

So far, the researchers have screened millions of digital compounds, a process that took 7.55 million computational hours on the HPC. They’ve discovered more than 300 potentially effective compounds. With a team of students, the scientists have tested 30 of those 300 compounds in the lab and found several that inhibit the protein.

Wise and Vogel also are working with their colleague and Associate Professor Robert Harrod to test a multidrug resistant line of cancer cells to see if the drugs again can make the susceptible to .

Explore further: Ecstasy derivative targets blood cancers

Related Stories

Ecstasy derivative targets blood cancers

October 6, 2011

(Medical Xpress) -- A team of UWA researchers have found they may be able to alter the club drug ‘ecstasy’ to kill certain types of blood cancers at the same time boosting the potency and reducing the psychoactivity.

Recommended for you

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.