Photovoltaic cells tap underwater solar energy

Photovoltaic cells tap underwater solar energy
This graph shows power density of GaInP and crystalline silicon cells, underwater, as a function of depth. Credit: US Naval Research Laboratory

Scientists at the U.S. Naval Research Laboratory (NRL), Electronics Science and Technology Division, dive into underwater photovoltaic research to develop high bandgap solar cells capable of producing sufficient power to operate electronic sensor systems at depths of 9 meters.

Underwater autonomous systems and sensor platforms are severely limited by the lack of long endurance power sources. To date, these systems must rely on on-shore power, batteries or solar power supplied by an above water platform. Attempts to use photovoltaics have had limited success, primarily due to the lack of penetrating sunlight and the use of solar cells optimized more towards the unimpeded terrestrial solar spectrum.

"The use of autonomous systems to provide situational awareness and long-term environment monitoring underwater is increasing," said Phillip Jenkins, head, NRL Imagers and Detectors Section. "Although water absorbs sunlight, the technical challenge is to develop a solar cell that can efficiently convert these underwater photons to electricity."

Even though the absolute intensity of solar radiation is lower underwater, the spectral content is narrow and thus lends itself to high if the solar cell is well matched to the . Previous attempts to operate solar cells underwater have focused on crystalline and more recently, amorphous silicon cells.

High-quality gallium (GaInP) cells are well suited for underwater operation. GaInP cells have high in wavelengths between 400 and 700 nanometers (visible light) and intrinsically low dark current, which is critical for high efficiency in lowlight conditions.

The filtered spectrum of the sun underwater is biased toward the blue/green portion of the spectrum and thus higher bandgap cells such as GaInP perform much better than conventional , states Jenkins.

Preliminary results at a maximum depth of 9.1 meters reveal output to be 7 watts per square meter of solar cells, sufficient to demonstrate there is useful solar power to be harvested at depths commonly found in nearshore littoral zones.

Citation: Photovoltaic cells tap underwater solar energy (2012, June 7) retrieved 25 September 2023 from https://phys.org/news/2012-06-photovoltaic-cells-underwater-solar-energy.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

NREL, UCLA certify world record for polymer solar cell efficiency

0 shares

Feedback to editors