NRL researchers develop improved non-skid coating for shipboard applications

June 13, 2012 By Donna McKinney
The NRL-developed siloxane-based, non-skid coating is installed aboard the USS Cape St. George. Credit: U.S. Naval Research Laboratory

Scientists in the Chemistry Division at the Naval Research Laboratory have developed a novel two-component siloxane-based non-skid coating for use on flight-decks and walk-ways of U.S. Navy ships. The new coating is more durable, color retentive, chemical resistant and cheaper due to a longer life expectancy than traditional epoxy-based coatings. This research is funded by the Office of Naval Research's (ONR's) Future Naval Capability Program (Dr. Airan Perez) and supported by Naval Sea Systems Command.

Mr. John Wegand, program team member, at NRL's Center for Corrosion Science and Engineering, explains "The new siloxane-based possesses greater external durability in harsh operational environments, improved traction capabilities, ease of application and most importantly, a longer life-span reducing the overall cost of the elements compared to the current epoxy and amine component coating. The new coating is quite versatile; it can be rolled or spray-applied over either a primed or bare-metal surface. We have noted extremely positive results from our recent demonstrations conducted on several Navy ships based in Norfolk, Virginia."

The Navy installs nearly 3.7 million square feet of non-skid coating per year at an annual cost of over $56 million. The maximum life expectancy of the present non-skid coating is just 18 months. These coatings are composed of aromatic , which although initially provide good hardness and chemical resistance, are notorious for degrading rapidly when exposed to the harsh external environmental conditions that the U.S. Navy routinely encounters at sea. The material is also difficult to apply because of its short pot life and slow drying time. Both of these attributes often lead to premature failure or damage to the coatings.

The NRL-developed siloxane-based, non-skid coating is installed aboard the USS Mason. Credit: U.S. Naval Research Laboratory

Demonstration results of the newly developed silicon based non-skid coating have shown it to be much stronger, durable, color retentive, chemical resistant and much more forgiving in the application process than the current coating. Its versatility allows for application by either spraying or rolling over either primed or directly to clean and blasted steel surfaces, because of its improved bonding capabilities. "Test results proved our new coating material greatly outperformed the current coating and met all research goals for this program, especially with regard to UV and chemical resistance," concluded Mr. Wegand

As the technical lead for ONR and NAVSEA, the NRL research team's main objective was to extend the service life of Navy non-skid systems. This includes identifying, developing and/or testing next-generation non-epoxy alternatives for extended durability flight and general deck performance, as well as addressing heat-resistant issues associated with current and future vertical launch aircraft requirements.

Explore further: Spray-on protective coating wins 'R&D 100' Award

Related Stories

Spray-on protective coating wins 'R&D 100' Award

October 13, 2011

R&D Magazine honored Office of Naval Research scientist Dr. Roshdy George S. Barsoum with a 2011 "R&D 100" award on Oct. 13 for the development of a revolutionary coating material that is blast-and fire-resistant.

New coating protects steel and superalloys

March 23, 2006

Researchers at Pacific Northwest National Laboratory have developed a new ceramic-based coating for steel and superalloys that prevents corrosion, oxidation, carburization and sulfidation that commonly occur in gas, liquid, ...

Graphene is thinnest known anti-corrosion coating

February 22, 2012

New research has established the "miracle material" called graphene as the world's thinnest known coating for protecting metals against corrosion. Their study on this potential new use of graphene appears in ACS Nano.

Mussel adhesive inspires tough coating for living cells

April 6, 2011

Inspired by Mother Nature, scientists are reporting development of a protective coating with the potential to enable living cells to survive in a dormant condition for long periods despite intense heat, dryness and other ...

Recommended for you

Close up view of growing polymer chain show jump steps

October 20, 2017

(—A team of researchers at Cornell University has devised a means for watching as a polymer chain grows after application of a catalyst. In their paper published in the journal Science, the team explains how they ...

The birth of a new protein

October 20, 2017

A yeast protein that evolved from scratch can fold into a three-dimensional shape—contrary to the general understanding of young proteins—according to new research led by the University of Arizona.

Discovery lights path for Alzheimer's research

October 19, 2017

A probe invented at Rice University that lights up when it binds to a misfolded amyloid beta peptide—the kind suspected of causing Alzheimer's disease—has identified a specific binding site on the protein that could facilitate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.