Molecular controller switches off genetic material

June 11, 2012
Molecular controller switches off genetic material

( -- Genetic material has many inactive sections that are of major importance for cell identity and genome stability. The HP1 protein takes on key functions in shutting down such genomic sequences. In the latest issue of Molecular Cell, in a collaborative effort from the Friedrich Miescher Institute for Biomedical Research (FMI) and the Biozentrum of the University of Basel, researchers show how HP1 functions in repressing the genome at the molecular level.

The genetic material in our cells consists of both active and inactive areas. While the genes in the active areas can be read like an open book, the inactive sections remain under lock and key. These functionally conserved and compacted areas of the genome are important for as well as for the stability and correct distribution of during cell division. They are specified by biochemical modifications of the genetic material itself or by histones, the proteins around which DNA is wrapped. A protein originally identified in flies as Heterochromatin Protein 1 (HP1) binds particularly modified histones with high specificity and guarantees inactivation of the closed-off areas.

HP1 monitors the inactivation of genetic material

HP1 proteins bind specifically marked histone proteins and shut down the underlying genomic sequences. Using a combination of yeast and biophysical approaches, Marc Bühler and his team at the FMI together with the structural biologists in Sebastian Hiller's team at the Biozentrum show how this process works at the molecular level. Rather than by just one single HP1 protein, the role of the watchdog is taken by a collective of such proteins, which bind to the histone in a continuous relay. In so doing, HP1 intercepts unwanted RNA transcripts of the repressed and escorts these molecules to the cellular machinery that degrades them. At that same time, a new HP1 occupies the vacated space on the histone. This continual changeover guarantees that RNA transcripts emanating from supposedly inactive regions of the genome are continuously destroyed.

Dynamic interactions

Biophysical measurements show how HP1 dynamically monitors the chromatin situation. This dynamic cycling allows the cell to control gene deactivation on two different levels at the same time. "Our findings illustrate the importance of HP1 in yeast," comments Claudia Keller, PhD student in Marc Bühler's laboratory. "However, HP1 has persisted throughout evolution and is present in human cells as well. In the future we will be aiming at a better understanding of how the protein functions in man, and will investigate the structure of HP1 in greater detail."

Explore further: New study bolsters beliefs about DNA repair

More information: Keller C, et al. (2012). HP1Swi6 mediates the recognition and destruction of heterochromatic RNA transcripts. Molecular Cell, doi:10.1016/j.molcel.2012.05.009

Related Stories

New study bolsters beliefs about DNA repair

November 17, 2008

Aucott et al. report the first in vivo experiments on the heterochromatin protein 1 (HP1) family, which sidles up to silent DNA. The results, to be published in the Nov. 17 issue of the Journal of Cell Biology, add to the ...

New role for phosphorylation in heterochromatin

March 9, 2011

A great many cellular processes are switched on or off by the modification of a given enzyme or other protein by addition of a phosphate molecule, known as phosphorylation. This regulatory activity occurs widely in the cytoplasm, ...

Core tenets of the 'histone code' are universal

September 6, 2007

In one of biology’s most impressive engineering feats, specialized proteins called histones package some six-and-a-half feet of human DNA into a nucleus that averages just five microns in diameter.

Live from the scene: Biochemistry in action

August 8, 2011

Researchers can now watch molecules move in living cells, literally millisecond by millisecond, thanks to a new microscope developed by scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. ...

Histone modifications control accessibility of DNA

July 14, 2010

( -- n an advanced online publication in Nature Structural & Molecular Biology scientist from Dirk Schübeler's group from the Friedrich Miescher Institute for Biomedical Research provide a genome-wide view of ...

Regulating the nuclear architecture of the cell

December 10, 2006

An organelle called the nucleolus resides deep within the cell nucleus and performs one of the cell's most critical functions: it manufactures ribosomes, the molecular machines that convert the genetic information carried ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.