

Making it easier to build secure Web
applications

June 19 2012, by Larry Hardesty

Two years ago, a fledgling social-networking site called Blippy
accidentally posted the credit card numbers of its users online. While
that was a particularly egregious example, such inadvertent information
leaks happen all the time: In April, for instance, the Texas attorney
general’s office sent civil-rights groups information on 13.1 million
registered voters — including, accidentally, the complete Social Security
numbers of many of them. Less than a month before, the city of
Providence, R.I., accidentally released the Social Security numbers of
nearly 3,000 former state employees to a local news organization.

At the USENIX Annual Technical Conference in Boston last week, MIT
researchers presented a new programming system that could help prevent
such inadvertent information leaks.

1/5

https://phys.org/tags/information+leaks/

The system, dubbed Aeolus, is designed for programmers developing
large, distributed Web applications, and it automatically keeps track of
users’ data-access privileges. While academics have been investigating
such systems for years, Institute Professor Barbara Liskov, who led the
new work, says Aeolus should prove much easier to use than its
predecessors. And that, she argues, will make professional programmers
more likely to adopt it.

“Just making it easy to do things like this means people will be likely to
do them,” says Liskov, the 2008 winner of the Turing Award, the highest
honor in computer science. “On the other hand, if it’s hard to do,
application developers probably won’t do it.”

When a user of any Web application logs on, he or she generally has to
supply a user name and a password. But that is by no means the last
authorization check that the application performs. Every time the user
invokes a new application function — moving money between bank
accounts, for instance, or making a note in a patient’s medical record —
the application verifies that the user has the appropriate authorization.
Those verifications happen behind the scenes, but the application
developer still has to program them. If the developer correctly provides a
thousand security checks but misses one, the application is insecure.

Hence the need for software development tools that track authorization
automatically. Previous such systems, Liskov says, used what security
researchers call the capability model. A capability is like an admission
ticket that authorizes the holder to access certain information (except
that the ticket is stored on the user’s computer, and the user never knows
it’s there). Different functions in a Web application require their own
tickets, and tickets can be passed back and forth between users. When a
user attempts to invoke a function, the application simply verifies that he
or she has the appropriate ticket.

2/5

https://phys.org/tags/web+applications/

Technically, such an approach is perfectly feasible, but in practice,
Liskov says, it’s hard for programmers to think about. The programmer
doesn’t have to write code for the security checks or the ticket
allocations, but he or she does have to draw up rules about which users
should receive which tickets on which occasions, and the ramifications
of particular rule choices can be difficult to trace out.

Aeolus, which Liskov developed together with her former graduate
student Winnie Cheng, current graduate students Dan Ports, David
Schultz and James Cowling, and colleagues at Stanford University,
Princeton University and Brandeis University, provides a much more
intuitive way to think about authorization. Instead of providing rules for
ticket dispensation, the programmer simply describes a hierarchy of
system users. In a medical-data system, for instance, diagnostic
information may be available to a patient’s primary-care physician, but
only contact information and appointment times are under the control of
the administrative staff. A user’s login credentials identify her as
occupying a certain stratum of the hierarchy, and Aeolus takes care of
the rest.

Among other advantages, the hierarchical approach makes it easier to
revoke access privileges. A physician who changes clinics, for instance,
might still need access to a statewide medical database, but should no
longer be able to look at former patients’ private information. With the
capability model, that entails rescinding the physician’s tickets; with
Aeolus, on the other hand, the physician is simply demoted to a lower
rung in the hierarchy.

It takes complex machinery, however, to make the system so easy to use.
Aeolus includes several crucial mechanisms that work in the background
to maintain security. When a user is logged into a Web application, the
application needs to keep track of all the transactions the user performs.
Because that record is constantly being updated, it’s stored in high-speed,

3/5

easy-access memory. Aeolus ensures that none of the data in the
transaction record can leak to other users of the same application or
other applications running on the same server. Similarly, someone high
up in the authorization hierarchy might want to use third-party software
to analyze privileged data; Aeolus automatically ensures that the user’s
authority doesn’t transfer to the software. The software can manipulate
the data, but it can’t leak it to the outside world.

Indeed, this raises a central point about Aeolus: It’s a system for
controlling information flow, not data access. That is, people at the
bottom of the hierarchy can view privileged information on their
computer screens; they just can’t do anything else with it, such as paste it
into a word-processor document — or accidentally post it online.

“The belief of people who work on this second approach, which is the
information-flow approach, is that it makes it easier to build
applications, compared to the access-control approach,” Liskov says.
Malicious users could still find ways to release private information. But,
Liskov says, “the truth is that today the biggest problem is simple errors:
‘I didn’t really mean to do this but just did it by accident.’”

Even with Aeolus’s predecessors, “the advantages in terms of strong
security are evident,” says Andrew Myers, a professor of computer
science at Cornell University. “But it’s kind of a cost-benefit analysis:
For most developers, the cost in terms of changing the way you do things
has been high enough that they’re not willing to make that switch.” With
Aeolus, however, “You can specify the security policy in a much more
intuitive way,” Myers says. “The management of revocation is also
significantly more sophisticated than in prior work.”

Whether those improvements lower the cost of adoption enough that
developers will start using such systems remains to be seen, Myers says.
But “at some point we’re going to hit the proverbial tipping point.”

4/5

 More information: Paper: “Abstractions for usable information flow
control in Aeolus”

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Making it easier to build secure Web applications (2012, June 19) retrieved 18 April
2024 from https://phys.org/news/2012-06-easier-web-applications.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://drkp.net/drkp/papers/aeolus-usenix12.pdf
http://drkp.net/drkp/papers/aeolus-usenix12.pdf
http://web.mit.edu/newsoffice/
https://phys.org/news/2012-06-easier-web-applications.html
http://www.tcpdf.org

