Clothing the body electric

June 29, 2012 By Steven Powell
Xiaodong Li (foreground) demonstrates the flexibility of a swatch of activated carbon textile.

(Phys.org) -- Over the years, the telephone has gone mobile, from the house to the car to the pocket. The University of South Carolina's Xiaodong Li envisions even further integration of the cell phone – and just about every electronic gadget, for that matter – into our lives.

He sees a future where electronics are part of our wardrobe.

"We wear fabric every day," said Li, a professor of mechanical engineering at USC. "One day our cotton T-shirts could have more functions; for example, a flexible device that could charge your or your iPad."

Li is helping make the vision a reality. He and post-doctoral associate Lihong Bao have just reported in the journal Advanced Materials how to turn the material in a cotton T-shirt into a source of electrical power.

Starting with a T-shirt from a local discount store, Li's team soaked it in a solution of fluoride, dried it and baked it at high temperature. They excluded oxygen in the oven to prevent the material from charring or simply combusting.

The surfaces of the resulting fibers in the fabric were shown by infrared spectroscopy to have been converted from cellulose to activated carbon. Yet the material retained flexibility; it could be folded without breaking.

"We will soon see roll-up cell phones and laptop computers on the market," Li said. "But a flexible energy storage device is needed to make this possible."

The once-cotton T-shirt proved to be a repository for electricity. By using small swatches of the fabric as an electrode, the researchers showed that the flexible material, which Li's team terms activated carbon textile, acts as a capacitor. Capacitors are components of nearly every electronic device on the market, and they have the ability to store electrical charge.

Moreover, Li reports that activated carbon textile acts like double-layer capacitors, which are also called a supercapacitors because they can have particularly high energy storage densities.

But Li and Bao took the material even further than that. They then coated the individual fibers in the activated carbon textile with “nanoflowers” of manganese oxide. Just a nanometer thick, this layer of manganese oxide greatly enhanced the electrode performance of the fabric. "This created a stable, high-performing supercapacitor," said Li.

This hybrid fabric, in which the activated carbon textile fibers are coated with nanostructured , improved the energy storage capability beyond the activated carbon textile alone. The hybrid supercapacitors were resilient: even after thousands of charge-discharge cycles, performance didn't diminish more than 5 percent.

"By stacking these supercapacitors up, we should be able to charge portable electronic devices such as cell phones," Li said.

Li is particularly pleased to have improved on the means by which fibers are usually obtained. "Previous methods used oil or environmentally unfriendly chemicals as starting materials," he said. "Those processes are complicated and produce harmful side products. Our method is a very inexpensive, green process."

Explore further: Ordinary T-shirts could become body armor

More information: Advanced Materials DOI: 10.1002/adma.201200246

Related Stories

Cheaper, greener, alternative energy storage at Stevens

May 23, 2011

Every year, the world consumes 15 Terrawatts of power. Since the amount of annual harvestable solar energy has been estimated at 50 Terrawatts, students at Stevens Institute of Technology are working on a supercapacitor that ...

Recommended for you

Scientists produce dialysis membrane made from graphene

June 29, 2017

Dialysis, in the most general sense, is the process by which molecules filter out of one solution, by diffusing through a membrane, into a more dilute solution. Outside of hemodialysis, which removes waste from blood, scientists ...

Nanostructures taste the rainbow

June 28, 2017

Engineers at Caltech have for the first time developed a light detector that combines two disparate technologies—nanophotonics, which manipulates light at the nanoscale, and thermoelectrics, which translates temperature ...

Researchers create very small sensor using 'white graphene'

June 28, 2017

Researchers from TU Delft in The Netherlands, in collaboration with a team at the University of Cambridge (U.K.), have found a way to create and clean tiny mechanical sensors in a scalable manner. They created these sensors ...

A levitated nanosphere as an ultra-sensitive sensor

June 28, 2017

Sensitive sensors must be isolated from their environment as much as possible to avoid disturbances. Scientists at ETH Zurich have now demonstrated how to remove from and add elementary charges to a nanosphere that can be ...

Injectable plant-based nanoparticles delay tumor progression

June 28, 2017

Researchers from Case Western Reserve University School of Medicine in collaboration with researchers from Dartmouth Geisel School of Medicine and RWTH Aachen University (Germany) have adapted virus particles—that normally ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
5 / 5 (3) Jun 29, 2012
The hybrid supercapacitors were resilient: even after thousands of charge-discharge cycles, performance didn't diminish more than 5 percent.

How about a few washing cycles?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.