Heading for blast off

June 5, 2012
Heading for blast off
The ANU plasma thruster will help satellites travel for longer and further into deep space. Image courtesy of NASA.

(Phys.org) -- Construction of a pioneering plasma thruster – an engine that could be used to power satellites to Mars – and a space simulation facility that will aid the development of the first Australian satellites is underway at Mt Stromlo Observatory.

The project is being driven by the Space Plasma Power and Propulsion (SP3) Laboratory of the Research School of Physics and Engineering in close collaboration with the Research School of Astronomy and Astrophysics at The Australian National University.

The plasma thruster and the space simulation facility are expected to be ready by mid-next year. The plasma thruster could be propelling a test satellite into space within the next two years.

The initial missions will investigate the possibility of using the plasma thruster to send out-of-date satellites into ‘graveyard’ orbits. The long-term aim is to scale the prototypes up to allow flights to Mars. This would be the first time a satellite with a plasma engine has been tested.

Professor Rod Boswell, of the Space Plasma Power and Propulsion Laboratory, said that the plasma thruster project was significant for the Australian space community because it allowed for the development of completely Australian satellites.

Professor Boswell added that there was already a lot of interest and requests from the Australian space community – and beyond – to use the space simulation facility once it was up and running.

“A number of Australian universities teach aerospace and mechantronics. Up until now, there’s been nowhere for them to test their spacecrafts – they have to go overseas. So this will really be providing a major service, not only in Australia, but also in Southeast Asia.”

The project is a collaboration between European firm EADS-Astrium, the world’s largest aerospace and aeronautic company, the SP3 Laboratory at ANU and Surrey Space Centre at the University of Surrey, UK. It is being funded to the tune of $3.1million by the Department of Industry, Innovation, Science, Research and Tertiary Education.

Explore further: Princeton wins NASA Competition to Develop Plasma Rocket

Related Stories

Princeton wins NASA Competition to Develop Plasma Rocket

August 30, 2004

NASA has selected engineers at Princeton University to develop an advanced rocket thruster that could send people or robots to other planets with far less propellant than conventional engines. The National Aeronautics and ...

ESA accelerates towards a new space thruster

December 13, 2005

ESA has confirmed the principle of a new space thruster that may ultimately give much more thrust than today's electric propulsion techniques. The concept is an ingenious one, inspired by the northern and southern aurorae, ...

Fusion technology: from ANU to the world

June 30, 2005

Technology pioneered at ANU that could see the future of power generation become clean and green has come a step closer today with the announcement of an international development to harness fusion technology. Australian ...

Zapping deadly bacteria using space technology

May 27, 2011

Technology developed with ESA funding and drawing on long-running research aboard the International Space Station is opening up a new way to keep hospital patients safe from infections.

Australia takes on energy-guzzling TVs

October 10, 2007

A report for the Australian government recommends new energy efficiency standards for televisions that would ban most plasma models now available.

Recommended for you

NASA telescope studies quirky comet 45P

November 22, 2017

When comet 45P zipped past Earth early in 2017, researchers observing from NASA's Infrared Telescope Facility, or IRTF, in Hawai'i gave the long-time trekker a thorough astronomical checkup. The results help fill in crucial ...

Uncovering the origins of galaxies' halos

November 21, 2017

Using the Subaru Telescope atop Maunakea, researchers have identified 11 dwarf galaxies and two star-containing halos in the outer region of a large spiral galaxy 25 million light-years away from Earth. The findings, published ...

Cassini image mosaic: A farewell to Saturn

November 21, 2017

In a fitting farewell to the planet that had been its home for over 13 years, the Cassini spacecraft took one last, lingering look at Saturn and its splendid rings during the final leg of its journey and snapped a series ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 05, 2012
Hmm, I wonder if a spaceship could slowly "spiral" up to lunar orbit using this propulsion over a period of months (short enough to retain a load of LOX), and then get fuelled with H2, as the crew enters.
This way you only need ordinary propellants for a brief manouver to get from the moon to Earth, and then -having already reached 11.2 km/s- make a brief engine burst near Earth, eventually reaching a considerable velocity despite only using conventional fuels for a delta-v of 1-2 km/s. Good for Mars journeys.
The main problem I see is a power source for the plasma drive.
not rated yet Jun 05, 2012
Looking at a couple related articles, one stated they were using lithium ions for fuel. With all the use of lithium for battery technology and it being not as abundant as other elements, could shooting quantities of it into space be wise?
not rated yet Jun 05, 2012
Birger: The high specific impulse/low thrust of a plasma thruster makes it impossible to leave even the gravity at the lunar surface using today's technology. If we did have such technology we would most certainly be using that to get around up there right now, that's for certain. The Europeans did send an ion engine powered probe to the moon some time ago as a proof of concept. The journey took three years and then some. Today's ion thrusters are significantly better, but the kind of thrust that you are envisioning cannot yet be achieved.
not rated yet Jun 06, 2012
... could shooting quantities of it into space be wise?

The world produces 34000 tonnes per year [wikipedia].

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.