Researchers successfully test solar desalination system for arid land agriculture

Ben-Gurion University of the Negev (BGU) researchers have created a man-made oasis in the desert with the successful application of a solar-powered desalination system that provides water for irrigation in arid regions. The project was made possible with support from American Associates, Ben-Gurion University of the Negev (AABGU).

The solar-powered system uses nanofiltration membranes to treat the local brackish (saline) , resulting in high-quality desalinated . The results of the Josefowitz Oasis Project indicate that irrigation with desalinated water yields higher productivity from water and inorganic fertilizers compared with current practices. Crops grown with desalinated water required 25 percent less irrigation and fertilizer than brackish water irrigation. In some cases, the yield of crops increased.

The findings were presented in a paper at the Conference on Desalination for the Environment in Barcelona late last month by Dr. Andrea Ghermandi of BGU's Zuckerberg Institute for Water Research (ZIWR) on behalf of his colleagues Drs. Rami Messalem (ZIWR), Rivka Offenbach, and Shabtai Cohen of the Central Arava Research and Development Station. The Josefowitz Oasis Project was funded by Samuel Josefowitz, of Lausanne, Switzerland with additional support from The Alliance for Global Good, Greensboro, North Carolina through AABGU.

"The growing global demand for food and competition for resources between economic sectors compel future agricultural systems to be more efficient in the use of natural resources, such as land and water," says Dr. Ghermandi. "In the Middle East, the lack of fresh water promotes the exploitation of marginal quality sources such as brackish aquifers, but the sustainability of the current management practices is questionable."

The research was conducted in the Arava Valley of Israel, south of the Dead Sea at a facility that produces environmentally sustainable crops in arid environments. The Arava basin is extremely dry and its agricultural activities rely extensively on brackish groundwater from local aquifers.

Agricultural experiments with variable irrigation water quality, application rate and four different staple crops were conducted over two growing seasons between September 2010 and June 2011. Nanofiltration membranes allowed for less pumping of energy. The desalination plant operated at low pressure, low energy consumption and with little maintenance required during the period.

The researchers also used red beet, a salt-tolerant crop, to successfully consume the liquid wastes of the pilot facility over two growing seasons. This demonstrates that the moderately saline concentrate waste from brackish water desalination can be a useable byproduct.

"The Alliance for Global Good, generously supported by Leonard Kaplan, has been a partner of ours for a year now and is focused on innovation and research to solve global problems," explains American Associates, Ben-Gurion University of the Negev Executive Vice President Doron Krakow. "The Josefowitz Oasis Project has the potential to help quench the thirst of a very parched world."


Explore further

New technology being developed for use in Jordan desalination plant

Citation: Researchers successfully test solar desalination system for arid land agriculture (2012, May 25) retrieved 26 June 2019 from https://phys.org/news/2012-05-successfully-solar-desalination-arid-agriculture.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

May 25, 2012
"environmentally sustainable crops" "rely extensively on brackish groundwater from local aquifers."

does this add up? - draining aquifers is NOT sustainable unless they are naturally replenished at the same rate as the water is extracted.

May 28, 2012
tscati: actually it can so long as the extraction rate does not exceed that which is replenished by rainwater and other natural and unnatural sources. As with any other resource, so long as you do not exceed your 'in-come', your account will be fine. I really like the touch using (red)beet crops to utilize the even more brackish water by-product. They're a natural source of (beet) sugar aside from the fact that I enjoy the heck out of them with a nice touch of vinegar and butter. Over here Santa Monica and Santa Barbara really should take notice, except they'll probably go on being scientifically/ecologically ignorant.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more