

New mathematical framework formalizes
oddball programming techniques

May 23 2012, by Larry Hardesty

Two years ago, Martin Rinard's group at MIT's Computer Science and
Artificial Intelligence Laboratory proposed a surprisingly simple way to
make some computer procedures more efficient: Just skip a bunch of
steps. Although the researchers demonstrated several practical
applications of the technique, dubbed loop perforation, they realized it
would be a hard sell. "The main impediment to adoption of this
technique," Imperial College London's Cristian Cadar commented at the
time, "is that developers are reluctant to adopt a technique where they
don't exactly understand what it does to the program."

Loop perforation is just one example of a way in which computer
scientists are looking to trade a little bit of accuracy for substantial gains

1/5

http://phys.org/news192982369.html
https://phys.org/tags/computer+scientists/
https://phys.org/tags/computer+scientists/

in performance. Others include high-speed chips that yield slightly
inaccurate answers to arithmetic problems and low-power memory
circuits that don't guarantee perfectly faithful storage. But all of these
approaches provoke skepticism among engineers: If a computing system
is intrinsically unreliable, how do we know it won't fail catastrophically?

At the Association for Computing Machinery's Conference on
Programming Language Design and Implementation in June, Rinard's
group will present a new mathematical framework that allows computer
scientists to reason rigorously about sloppy computation. The framework
can provide mathematical guarantees that if a computer program
behaves as intended, so will a fast-but-inaccurate modification of it.

"Loop perforation shares with a lot of the research we've done this kind
of happy-go-lucky, let's-give-it-a-go-and-see-what-happens approach,"
says Rinard, a professor in MIT's Department of Electrical Engineering
and Computer Science. "But once you observe a phenomenon, it helps to
understand why you see what you see and to put a formal framework
around it."

Incentive structure

The new research, which also involved lead author Michael Carbin and
his fellow graduate students Deokhwan Kim and Sasa Misailovic, fits
into the general category of formal verification. Verification is a method
for mathematically proving that a program does what it's supposed to.
It's used in hardware design, in academic work on algorithms and in the
development of critical software that can't tolerate bugs. But because it's
labor intensive, it's rarely used in the development of commercial
applications.

That's starting to change, however, as automated verification tools
become more reliable and accessible. Carbin hopes that the performance

2/5

http://phys.org/news/2011-01-sloppy-arithmetic.html
http://phys.org/news/2011-08-imperfect-chips.html
http://phys.org/news/2011-08-imperfect-chips.html
https://phys.org/tags/computing+system/
https://phys.org/tags/mathematical+framework/
http://phys.org/news188046841.html

gains promised by techniques such as loop perforation will give
programmers an incentive to adopt formal verification techniques.
"We're identifying all these opportunities where programmers can get
much bigger benefits than they could before if they're willing to do a
little verification," Carbin says. "If you have these large performance
gains that just don't come about otherwise, then you can incentivize
people to actually go about doing these things."

As its name might imply, loop perforation involves the computer
routines known as loops, in which the same operation is performed over
and over on a series of data; a perforated loop is one in which iterations
of the operation are omitted at regular intervals. Like other techniques
that trade accuracy for performance, Rinard explains, loop perforation
works well with tasks that are, in the jargon of computer science,
nondeterministic: They don't have to yield a single, inevitable answer. A
few pixels in a frame of Internet video might be improperly decoded
without the viewer's noticing; similarly, the precise order of the first
three results of a Web search may not matter as much as returning the
results in a timely fashion.

Drawing boundaries

With the researchers' framework, the programmer must specify
"acceptability properties" for each procedure in a program. Those
properties can be the types of things that formal verification typically
ensures: that the result of a computation falls within a range of values,
for instance, or that the output of a function adheres to a particular file
format. But with the MIT framework, the programmer can also specify
acceptability properties by reference to the normal execution of the
program: The output of the modified procedure must be within 10
percent of the output of the unmodified procedure, say, or it must yield
the same values, but not necessarily in the same order.

3/5

One advantage of the framework is that it allows developers who have
already verified their programs to reuse much of their previous
reasoning. In many cases, the programmer can define an acceptability
property in such a way that, if it's met, the relaxed program will also
preserve any other properties that the programmer has verified.

In the framework described in the new paper, the programmer must also
describe how the procedure is to be modified, whether through loop
perforation or some other technique. But Carbin says the group is
already working on a computer system that allows the programmer to
simply state acceptability properties; the system then automatically
determines which modifications preserve those properties, with what
types of performance gains.

"This idea of relaxation — trading the traditional notion that a computer
has to do every part of a computation exactly correctly for huge energy
savings, or performance savings, or ease of implementation — is not a
new idea," says Dan Grossman, an associate professor of computer
science and engineering at the University of Washington, who also works
on program relaxation. "But what this paper does is put in on a much
firmer footing."

The paper also, Grossman says, shows "how you can formally verify
software. But what it's doing by doing that is explaining what relaxed
software actually is, what it means, what exactly it's relaxing."

 More information: Paper: “Proving Acceptability Properties of
Relaxed Nondeterministic Approximate Programs” (PDF)

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

4/5

https://phys.org/tags/computer+science/
https://phys.org/tags/computer+science/
http://people.csail.mit.edu/rinard/paper/pldi12.relaxed.pdf
http://web.mit.edu/newsoffice/

Provided by Massachusetts Institute of Technology

Citation: New mathematical framework formalizes oddball programming techniques (2012, May
23) retrieved 20 June 2024 from https://phys.org/news/2012-05-mathematical-framework-
formalizes-oddball-techniques.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

https://phys.org/news/2012-05-mathematical-framework-formalizes-oddball-techniques.html
https://phys.org/news/2012-05-mathematical-framework-formalizes-oddball-techniques.html
http://www.tcpdf.org

