Research group creates longer lived and more efficient quantum memory

May 30, 2012 by Bob Yirka report

( -- One of the main sticking points to creating a true quantum computer capable of performing meaningful work, is the problem of storing quantum state information in memory. Recent efforts have resulted in highly efficient memory that lasted only a short time or low efficient memory that lasts longer. Now, a combined group of two teams, one from China and one from Germany, have come up with a way that appears to offer the best of both worlds. As they describe in their paper published in the journal Nature Physics, they found that they were able to store quantum information in atomic spin waves.

Spin waves are where the electronic spin of one atom is transferred to another and then to another and so on propagating through a group. In this new research, the team found that by embedding information in a spin wave, and then retrieving it later, they could take advantage of the time it takes for the propagation to occur all the way though all of the atoms, thus allowing for holding onto information for a specified period of time.

To make this come about, the team built a magneto-optical trap that first slowed atoms down using a laser beam. Once slowed, the atoms were held steady using magnets in a vertical triangular trap. When a photon was introduced, it caused a spin that was propagated through the atoms, creating a spin wave. At the other end, another laser fired at the same frequency as the first but with the opposite polarization caused the spin to be converted back into a photon, which revealed the quantum state information that had been held first in the original photon, and then conveyed through the wave. Using this technique, the team found that they could hold on to the quantum state information for 3.2 milliseconds and that the process was between seventy one and seventy five percent efficient.

What’s more, the team believes that if optical lattices were introduced into the trap, i.e. crossed laser beams with different frequencies, they could make the whole system even more efficient. They also believe that this new process could be used as a means for creating memory storage in an actual quantum computer.

Explore further: Quantum memory for communication networks of the future

More information: Efficient and long-lived quantum memory with cold atoms inside a ring cavity, Nature Physics (2012) doi:10.1038/nphys2324

Quantum memories are regarded as one of the fundamental building blocks of linear-optical quantum computation and long-distance quantum communication. A long-standing goal to realize scalable quantum information processing is to build a long-lived and efficient quantum memory. There have been significant efforts distributed towards this goal. However, either efficient but short-lived or long-lived but inefficient quantum memories have been demonstrated so far. Here we report a high-performance quantum memory in which long lifetime and high retrieval efficiency meet for the first time. By placing a ring cavity around an atomic ensemble, employing a pair of clock states, creating a long-wavelength spin wave and arranging the set-up in the gravitational direction, we realize a quantum memory with an intrinsic spin wave to photon conversion efficiency of 73(2)% together with a storage lifetime of 3.2(1) ms. This realization provides an essential tool towards scalable linear-optical quantum information processing.

via Arstechnica

Related Stories

Quantum memory for communication networks of the future

November 8, 2010

Researchers from the Niels Bohr Institute at the University of Copenhagen have succeeded in storing quantum information using two 'entangled' light beams. Quantum memory or information storage is a necessary element of future ...

Subatomic quantum memory in diamond demonstrated

June 27, 2011

Physicists working at the University of California, Santa Barbara and the University of Konstanz in Germany have developed a breakthrough in the use of diamond in quantum physics, marking an important step toward quantum ...

Single atom stores quantum information

May 2, 2011

( -- A data memory can hardly be any smaller: researchers working with Gerhard Rempe at the Max Planck Institute of Quantum Optics in Garching have stored quantum information in a single atom. The researchers ...

A quantum pen for single atoms

March 23, 2011

( -- German physicists at the Max Planck Institute of Quantum Optics succeeded in manipulating atoms individually in a lattice of light and in arranging them in arbitrary patterns. These results are an important ...

Efficient and tunable interface for quantum networks

May 23, 2012

( -- Quantum computers may someday revolutionize the information world. But in order for quantum computers at distant locations to communicate with one another, they have to be linked together in a network. While ...

Recommended for you

Studying the quantum vacuum: Traffic jam in empty space

January 18, 2017

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by Professor Alfred Leitenstorfer has now shown how to manipulate the ...

Flexible ferroelectrics bring two material worlds together

January 17, 2017

Until recently, "flexible ferroelectrics" could have been thought of as the same type of oxymoronic phrase. However, thanks to a new discovery by the U.S. Department of Energy's (DOE) Argonne National Laboratory in collaboration ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.