'Game-powered machine learning' opens door to Google for music

May 3, 2012 By Catherine Hockmuth, University of California - San Diego
The Facebook game Herd It is used to classify music. Credit: Jacobs School of Engineering

Can a computer be taught to automatically label every song on the Internet using sets of examples provided by unpaid music fans? University of California, San Diego engineers have found that the answer is yes, and the results are as accurate as using paid music experts to provide the examples, saving considerable time and money. In results published in the April 24 issue of the Proceedings of the National Academy of Sciences, the researchers report that their solution, called “game-powered machine learning,” would enable music lovers to search every song on the web well beyond popular hits, with a simple text search using key words like “funky” or “spooky electronica.”

Searching for specific multimedia content, including , is a challenge because of the need to use text to search images, video and audio. The researchers, led by Gert Lanckriet, a professor of electrical engineering at the UC San Diego Jacobs School of Engineering, hope to create a text-based multimedia search engine that will make it far easier to access the explosion of multimedia content online. That’s because humans working round the clock labeling songs with descriptive text could never keep up with the volume of content being uploaded to the Internet. For example, YouTube users upload 60 hours of video content per minute, according to the company.

In Lanckriet’s solution, computers study the examples of music that have been provided by the music fans and labeled in categories such as “romantic,” “jazz,” “saxophone,” or “happy.” The computer then analyzes waveforms of recorded songs in these categories looking for acoustic patterns common to each. It can then automatically label millions of songs by recognizing these patterns. Training computers in this way is referred to as machine learning. “Game-powered” refers to the millions of people who are already online that Lanckriet’s team is enticing to provide the sets of examples by labeling music through a Facebook-based online game called Herd It.

A screen-shot of the Facebook-based game Herd It. Credit: Jacobs School of Engineering

“This is a very promising mechanism to address large-scale music search in the future,” said Lanckriet, whose research earned him a spot on MIT Technology Review’s list of the world’s top young innovators in 2011.

Another significant finding in the paper is that the machine can use what it has learned to design new games that elicit the most effective training data from the humans in the loop. “The question is if you have only extracted a little bit of knowledge from people and you only have a rudimentary machine learning system, can the computer use that rudimentary version to determine the most effective next questions to ask the people?” said Lanckriet. “It’s like a baby. You teach it a little bit and the baby comes back and asks more questions.” For example, the machine may be great at recognizing the music patterns in rock music but struggle with jazz. In that case, it might ask for more examples of jazz music to study.

It’s the active feedback loop that combines human knowledge about music and the scalability of automated music tagging through machine learning that makes “Google for music” a real possibility. Although human knowledge about music is essential to the process, Lanckriet’s solution requires relatively little human effort to achieve great gains. Through the active feedback loop, the computer automatically creates new Herd It games to collect the specific human input it needs to most effectively improve the auto-tagging algorithms, said Lanckriet. The game goes well beyond the two primary methods of categorizing music used today: paying experts in music theory to analyze songs – the method used by Internet radio sites like Pandora – and collaborative filtering, which online book and music sellers now use to recommend products by comparing a buyer’s past purchases with those of people who made similar choices.   

Both methods are effective up to a point. But paid music experts are expensive and can’t possibly keep up with the vast expanse of music available online. Pandora has just 900,000 songs in its catalog after 12 years in operation. Meanwhile, collaborative filtering only really works with books and music that are already popular and selling well.

The big picture: Personalized radio

Lanckriet foresees a time when – thanks to this massive database of cataloged music -- cell phone sensors will track the activities and moods of individual cell phone users and use that data to provide a personalized radio service – the kind that matches music to one’s activity and mood, without repeating the same songs over and over again.

“What I would like long-term is just one single radio station that starts in the morning and it adapts to you throughout the day.  By that I mean the user doesn’t have to tell the system, “Hey, it’s afternoon now, I prefer to listen to hip hop in the afternoon. The system knows because it has learned the cell phone user’s preferences.”

This kind of personalized cell phone radio can only be made possible if the cell phone has a large database of accurately labeled songs from which to choose. That’s where efforts to develop a music search engine are ultimately heading. The first step is figuring out how to label all the music online well beyond the most popular hits. As Lanckriet’s team demonstrated in PNAS, game-powered is making that a real possibility.   

Lanckriet’s research is funded by the National Science Foundation, National Institutes of Health, the Alfred P. Sloan Foundation, Google, Yahoo!, Qualcomm, IBM and eHarmony. You can watch a video about the research and Lanckriet's auto-tagging algorithms to learn more.

Explore further: Online game feeds music search engine project at UC San Diego

Related Stories

Online game feeds music search engine project at UC San Diego

September 25, 2007

UC San Diego electrical engineers and computer scientists are working together on a computerized system that will make it easy for people who are not music experts (like the senior author’s mom) to find the kind of music ...

From a Queen song to a better music search engine (w/Video)

May 15, 2009

At a recent IEEE technology conference, UC San Diego electrical engineers presented a solution to their problem with the song "Bohemian Rhapsody,"—and it's not that they don't like this hit from the band Queen. The electrical ...

Heavy metal music has negative impacts on youth

October 20, 2011

Young people at risk of depression are more likely to listen habitually and repetitively to heavy metal music. University of Melbourne researcher Dr Katrina McFerran has found.

Recommended for you

Top takeaways from Consumers Electronics Show

January 13, 2018

The 2018 Consumer Electronics Show, which concluded Friday in Las Vegas, drew some 4,000 exhibitors from dozens of countries and more than 170,000 attendees, showcased some of the latest from the technology world.

Finnish firm detects new Intel security flaw

January 12, 2018

A new security flaw has been found in Intel hardware which could enable hackers to access corporate laptops remotely, Finnish cybersecurity specialist F-Secure said on Friday.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) May 03, 2012
Are you kidding me?! You couldn't put Psychedelic in a slightly larger bubble, or use a slightly smaller font size? Do you have any idea how tormenting that is to OCD readers like me?!


Hate me for giving you 1/5 stars just for driving me insane.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.