Raising the prospects for quantum levitation

More than half-a-century ago, the Dutch theoretical physicist Hendrik Casimir calculated that two mirrors placed facing each other in a vacuum would attract. The mysterious force arises from the energy of virtual particles flitting into and out of existence, as described by quantum theory. Now Norio Inui, a scientist from the University of Hyogo in Japan, has predicted that in certain circumstances a reversal in the direction of the so-called Casimir force would be enough to levitate an extremely thin plate. His calculations are published in the American Institute of Physics' (AIP) Journal of Applied Physics.

The Casimir force pushes identical plates together, but changes in the geometry and material properties of one of the plates can reverse the direction of the force. Inui calculated that a nanometer-thick plate made from a material called yttrium iron garnet (YIG) could hover half a micrometer above a gold plate. One key finding is that the repulsive force increases as the YIG plate gets thinner. This is convenient since the weight of the plate, and hence the magnitude of the force needed to levitate it, shrinks in tandem with the thickness. Right now the levitating plates exist solely in the theoretical realm.

As a next step, many key assumptions in the calculations will need to be experimentally tested. If the models stand up to further scrutiny, possible applications could include levitating the gyroscopes in micro-electro-mechanical systems (MEMS) and keeping the various components of nanomachines from sticking together.


Explore further

Metamaterials could reduce friction in nanomachines

More information: "Quantum Levitation of a Thin Magnetodielectric Plate on a Metallic Plate Using the Repulsive Casimir Force" by Norio Inui et al. is published in Journal of Applied Physics. dx.doi.org/10.1063/1.3698619
Journal information: Journal of Applied Physics

Provided by American Institute of Physics
Citation: Raising the prospects for quantum levitation (2012, April 18) retrieved 27 June 2019 from https://phys.org/news/2012-04-prospects-quantum-levitation.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Apr 20, 2012
In both cases, the Coulomb force (unlike attracting and opposite repelling) is able to operate over the close distance and low mass of the thin sheet against the gravitation force.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more