Future naval force may sail with the strength of titanium

April 4, 2012, Office of Naval Research

Steel may have met its match: An Office of Naval Research (ONR)-funded project will produce a full-size ship hull section made entirely with marine-grade titanium using a welding innovation that could help bring titanium into future Navy ship construction, officials announced April 3.

The contractor team building this section recently completed the industry's longest friction-stir welds and aims to complete the ship hull section this summer. Friction stir welds more than 17 feet long joined the alloy plates for the section's deck.

"This fast, effective friction stir weld technique is now an affordable that takes advantage of titanium's properties," said Kelly Cooper, the program officer managing the project for ONR's Sea Warfare and Weapons Department.

What it means for the Navy

Titanium metal and its alloys are desirable materials for and other structures because of their high strength, light weight and corrosion-resistance. If constructed in titanium, Navy ships would have lighter weight for the same size—allowing for a bigger payload—and virtually no corrosion. But because titanium costs up to nine times more than steel and is technically difficult and expensive to manufacture into marine vessel hulls, it has been avoided by the shipbuilding industry. But perhaps not for much longer.

Researchers at the University of New Orleans School of Naval Architecture and Textron Marine and Land Systems are demonstrating the feasibility of manufacturing titanium ship hull structures. Using lower cost marine grades of titanium, they fabricated a 20-foot-long main deck panel—composed of six titanium plates, joined together by friction stir welding—as part of technology studies for an experimental naval vessel called Transformable Craft, or T-Craft.

Since antiquity, blacksmiths have joined iron or steel parts together by heating them in a forge, placing them on an anvil and striking the two pieces repeatedly with a heavy hammer. After several repetitions of heating and striking, the two pieces were "hammer forged" or "forge welded" together.

Friction stir welding joins metals using the heat of friction produced by a spinning pin tool pressed down on both pieces of metal at their common joint. Friction heating produced by the high-speed rotation causes both metal pieces to heat up to a "plastic" condition, but not to melt. As the tool passes down the common joint line, the heated, plasticized metal from both pieces is kneaded together in the rotating tool's wake, forming the weld between them.

How it was accomplished

Friction stir welding works well for most aluminum . Titanium, however, is difficult to join by the same process because of the high temperatures required, and pin tool materials that erode and react with titanium, weakening the weld.

The researchers overcame that problem by using new titanium friction stir welding methods developed by Florida-based Keystone Synergistic Enterprises Inc. with funding from both ONR and the Air Force. The processes were scaled up and transferred to the National Center for Advanced Manufacturing (NCAM), which is a partnership between the University of New Orleans, NASA and the state of Louisiana.

To fabricate the ship hull structure, more than 70 feet of welded linear joints were made—the longest known welds in titanium made with the friction stir process. This friction stir welding achievement showed a noticeable improvement from previous similar processes. It was made at a high linear speed—indicating reduced manufacturing time; showed excellent weld penetration—indicating a secure connection; and had no distortion of the titanium adjoining the weld.

Experts attribute the success to an effective design of the pin tool, process parameters that emphasized pin tool life and exact duplication of the process steps from facility to facility and machine to machine.

ONR funds collaborative projects investigating novel shipbuilding materials and improved processes for titanium stir welding—especially its affordability—as part of the Sea Base Enabler Innovative Naval Prototype program.

Explore further: Hybrid welding process developed

Related Stories

Hybrid welding process developed

December 18, 2006

U.S. scientists say they've developed a hybrid process involving the use of a laser in friction-stir welding to extend the application to more materials.

New spin on friction-stir

July 26, 2011

(PhysOrg.com) -- Researchers Zhili Feng, Alan Frederic and Stan David in Oak Ridge National Laboratory's Materials S&T Division have made significant progress toward a new metal processing technique, called friction-stir ...

NASA Uses Twin Processes to Develop New Tank Dome Technology

December 2, 2009

(PhysOrg.com) -- NASA has partnered with Lockheed Martin Space Systems in Denver, Colo., and MT Aerospace in Augsburg, Germany, to successfully manufacture the first full-scale friction stir welded and spun formed tank dome ...

Tapping titanium's colorful potential

June 28, 2011

A new, cost-effective process for colouring titanium can be used in manufacturing products from sporting equipment to colour-coded nuclear waste containers.

Discovery might improve titanium alloys

October 20, 2005

Two University of Maryland scientists say they've developed a modification of titanium alloys that will expand their uses and make them safer.

Recommended for you

The perfect shot of espresso every time with chemistry

March 21, 2018

The average American drinks more than three cups of coffee a day, contributing to a $40 billion industry in the U.S. alone, according to the National Coffee Association. But not all coffee is created equal; flavor profiles ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 04, 2012
I guess we'll have 100 Billion dollar aircraft carrier for the next generation.

Maybe this will make mining the Moon for titanium cost-effective...
not rated yet Apr 04, 2012
I fear snails with the strength of titanium.
1 / 5 (1) Apr 04, 2012
The titanium is the desperately abundant element (the seventh-most abundant metal on the Earth), virtually indestructible metal - it's production just needs the energy. A huge amount of energy, the energy of cold fu*on. These titanium hulls will be required in new generation of cruisers, equipped with kinetic energy missiles (CKEM).

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.