Cells: The body's ultimate sports car

March 15, 2012 By Angela Herring
Anand Asthagiri, associate professor of chemical engineering, has developed a method for driving cells from Point A to Point B with more precision than ever. Above, the movement of human mammary epithelial cells is imaged by time-lapse microscopy using an inverted Zeiss Axiovert microscope. Credit: Mary Knox Merrill

(PhysOrg.com) -- Anand Asthagiri can think of several reasons why a scientist would want to get behind the wheel of a cell — which he calls the “ultimate driving machine.” Having the ability to move a cell from Point A to Point B, he said, could revolutionize tissue engineering and transform the understanding of various diseases, including cancer.

“It’s a complex problem, but I think we can make headway on it if we think about the cell as an engineerable entity,” said Asthagiri, an associate professor of chemical engineering in Northeastern University’s College of Engineering.

In a paper published in February in the journal Langmuir, Asthagiri and postdoctoral researcher Keiichiro Kushiro present a simple means of designing “traffic patterns” to guide cell movement.

Asthagiri said one way cells can be encouraged to move in a particular direction occurs naturally in our body — for instance, when our immune system responds to attacks. In a process called chemotaxis, cells move across a gradient of attractant molecules, from areas of lower to higher concentration.

Cells move by sticking and crawling on an adhesive surface using a variety of regulatory molecules, Asthagiri said. “If the surface is uniformly adhesive, then they’ll just move randomly,” he explained. “If you present them in a gradient of chemoattractant, they’ll move toward the chemoattractant but you won’t get the fine control of where they go.”

“Fine control” interested Asthagiri and Kushiro. In previous work, the researchers defined a set of micro-patterns that could constrain the movement of cells over an adhesive surface. A stripe of adhesive molecules, for example, keeps cells moving within that area. A teardrop shaped pattern — which looks like a migrating cell — gives them directionality, moving toward the broad end and away from the narrow end.

This time, the team explored a hybrid of the two micro-patterns, inserting a stripe into the teardrop to create a spear shape. They aligned these adhesive spears in a track-like square and then let the cells wander. While Asthagiri  expected the cells to move around the track with directionality and increased speed, he did not expect enhanced directionality.

“You put this piece in the middle that has no ability to endow directional bias but yet it does, so there’s clearly more going on in this hybrid,” Asthagiri explained. When cells are exposed to the stripe longer, they are more likely to turn despite the fact that stripes do not inherently promote turning.

Asthagiri and Kushiro are currently investigating why the combination of the two shapes makes for a more controllable system. They are also setting up “traffic patterns” made up of stripes, teardrops and spears to explore ways in which the method can be tuned to cause more directed cell movements.

“We are excited by this because it opens two very interesting avenues of opportunity,” Asthagiri said. “One avenue is to learn more about the fundamentals of how cells move and exploit it. The other exciting possibility is on the application side. Could we use this to send some cells one way and other types of cells another?”

If the latter proves true, Asthagiri said, then cancer cells could separate themselves from noncancerous cells and newly differentiated stem could go exactly where they’re needed in a tissue graft.

Explore further: Researchers explore how cells reconcile mixed messages in decisions about growth

Related Stories

Crucial step in cell division discovered

December 13, 2011

(Medical Xpress) -- Cancer Research UK scientists have discovered how cells ‘pinch in’ at the middle in order to split into two new cells. Their research is published in Developmental Cell today.

DNA 'off switch' may reverse premature aging

June 15, 2011

The secret to preventing or reversing premature aging may be found in a DNA “off switch” that humans share with common yeast, according to new research from the University of Toronto.

New technique allows researchers to study cell forces in 3-D

November 24, 2010

(PhysOrg.com) -- Researchers at the University of Pennsylvania have created a revolutionary new technique that will allow scientists to accurately measure the forces cells exert as they move through a three-dimensional environment.

Taking a closer look at cancer

September 12, 2011

(PhysOrg.com) -- Using a unique combination of biology and physics techniques, Swinburne University of Technology researchers are improving our understanding of cancer on a microscopic scale.

Recommended for you

Biologists unlock code regulating most human genes

January 24, 2017

Molecular biologists at UC San Diego have unlocked the code that initiates transcription and regulates the activity of more than half of all human genes, an achievement that should provide scientists with a better understanding ...

Biologists identify reproductive 'traffic cop'

January 24, 2017

Before an egg becomes fertilized, sets of chromosomes must pair up to pass along genetic information. This happens within each reproductive cell, where separate chromosomes of male and female origin move toward each other ...

Cooperation helps mammals survive in tough environments

January 24, 2017

Cooperatively breeding mammal species, such as meerkats and naked-mole rats, where non-breeding helpers assist breeding females in raising their offspring, are better able to cope with living in dry areas than related non-cooperative ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.