Why 'soot' could be the key to delivering drugs to cancer cells

February 29, 2012, Science and Technology Facilities Council
Carbon Nanotubes: Interactions Between Amino Acid-Tagged Naphthalenediimide and Single Walled Carbon Nanotubes for the Design and Construction of New Bioimaging Probes (Adv. Funct. Mater. 3/2012 Journal Cover). Credit: Drs Sofia Pascu and Stan Botchway

Nano-scale tubes made of carbon could be used to safely penetrate human cells and deliver anti-cancer medicines or modified DNA molecules for gene therapy. Although there is a long way to go before the concept can undergo medical trials, a team led by Dr. Sofia Pascu at the University of Bath has shown how these tubes could be used as a ‘cargo carrier’, to break through the outer membranes of cells that some useful therapeutic molecules would otherwise be unable to enter. The tubes, which are just a billionth of a metre long, can occur naturally, in candle soot for example. They could also be used to carry imaging agents such as fluorescent tags and radionuclides (radioactive isotopes widely used in therapy and diagnosis) that would make it possible to obtain better images of cells and tissues and so aid earlier detection of cancers.

The technique developed by the team has involved shortening, modifying and purifying the carbon nanotubes so that they are completely harmless. A payload of molecules is then wrapped very tightly around them using an innovative, rapid and low-cost process based on the techniques of “supramolecular chemistry”, a branch of chemistry coined as chemistry beyond the molecule. Early indications show that prostate cells might absorb the nanotube/molecule assemblies particularly well.

Next steps include looking at how the nanotubes could be developed not only to carry a medically useful cargo both inside and outside the tube but also to target specific (particularly damaged or cancerous ones). Further work will also include devising a simpler way of ensuring a strong attachment between molecules and nanotubes so that the molecules can penetrate the cell membrane successfully without becoming dislodged first.

This pioneering work has been carried out by the Bath team in collaboration with the Lasers for Science Facility at the Research Complex at Harwell and also involves the Universities of Oxford, Cambridge and Nottingham. It is also being funded by the Medical Research Council, the Royal Society and the University of Bath.

Details on the team’s work to date have been published in the February issue of the journal Advanced Functional Materials.

Explore further: Researchers clarify cellular uptake mechanisms for carbon nanotubes

More information: The full paper can be found here.

Related Stories

Nanotube 'glow sticks' transform surface science tool kit

January 11, 2012

(PhysOrg.com) -- Many physical and chemical processes necessary for biology and chemistry occur at the interface of water and solid surfaces. Researchers at Los Alamos National Laboratory publishing in Nature Nanotechnology ...

Polymer Nanotubes as Molecular Probes and DNA Carriers

May 1, 2006

By growing polymers on a porous aluminum oxide template, researchers at the Seoul National University in Korea have fabricated polymer nanotubes to which they can attach two different types of molecules. These new nanoscale ...

Recommended for you

Quantum dot ring lasers emit colored light

January 22, 2018

Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. The different colors are emitted from different parts of the quantum dot—red from the core, green from ...

Fast computer control for molecular machines

January 19, 2018

Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.