SMOS detects freezing soil as winter takes grip

December 15, 2011
SMOS has shown that it is able to detect frozen soil from space. The depth to which the soil is frozen can also be inferred. From the animation, which shows northern Finland, the difference between 26 November 2010 and 26 November 2011 can be seen clearly. This year’s late frost is associated with Europe’s mild weather this autumn. Credits: Finnish Meteorological Institute

( -- ESA’s SMOS satellite is designed to observe soil moisture and ocean salinity, but this innovative mission is showing that it can also offer new insight into Earth’s carbon and methane cycles by mapping soil as it freezes and thaws.

The launch of the Soil Moisture and (SMOS) mission in November 2009 opened up a new era of monitoring Earth using a new remote-sensing technique.

The satellite is capturing images of ‘brightness temperature’. These images correspond to microwave radiation emitted from Earth’s surface and can be related to soil moisture and ocean salinity.

Variability in and ocean salinity is a consequence of the continuous exchange of water between the oceans, the atmosphere and the land – Earth’s water cycle.

While SMOS provides essential information for understanding the water cycle, weather and climate system, scientists from the Finnish Meteorological Institute have recently developed a method of using the data to detect and map frozen soils.

Not only can the extent be mapped, but also the depth of the frozen layer can be inferred.

The animation shown above compares data from 26 November 2010 and 26 November 2011. Last year large parts of northern Finland were frozen to depths exceeding 30 cm. This year, however, autumn has been much milder and only a small area had frozen by 26 November.

SMOS detects freezing soil as winter takes grip
The Soil Moisture and Ocean Salinity (SMOS) mission makes global observations of soil moisture over Earth’s landmasses and salinity over the oceans. Variations in soil moisture and ocean salinity are a consequence of the continuous exchange of water between the oceans, the atmosphere and the land - Earth’s water cycle. Credits: ESA/AOES Medialab

Interestingly, as the next maps show, the advance of winter this year can be closely monitored.

The image on the left shows the state of the soil on 26 November and one below shows how much more soil has frozen just four days later.

As soil freezes every year, it stores large amounts of carbon and methane, which are released back into the atmosphere when it thaws in the spring.

Moreover, there is great concern that rising global temperatures will cause permanently frozen soil, permafrost, in high latitudes to thaw – releasing massive volumes of carbon and methane and adding further to the greenhouse effect.

Dr Kimmo Rautiainen from the Finnish Meteorological Institute (FMI) said, “The state of the soil has always been of particular interest in northern latitudes.

“Detecting frozen soils and the depth to which they are frozen from space has been an unresolved scientific problem.

“However, we are now confident that the novel observations provided by the SMOS mission will help advance our understanding of processes occurring in cold regions.”

Using SMOS data, the scientists have developed a method of inferring the depth of the frozen layer.

During the freezing process, brightness temperatures increase until the top 50 cm of the soil is frozen. Over winter the readings remain stable, even under the presence of deep snow. Thawing in spring then leads to a decrease in brightness temperature.

The SMOS data have been validated by observations taken from a ground-based radiometer at FMI’s Arctic Research Centre in Sodankylä, northern Finland.

Through a study being carried out within ESA’s Support to Science Element, the methods of detecting frozen will be refined further.

It is envisaged that similar data will be produced and released for use in applications such as numerical weather prediction and hydrology.

Explore further: SMOS shines at symposium

Related Stories

SMOS shines at symposium

June 30, 2010

Today, a focus at ESA's Living Planet Symposium is on the innovative SMOS mission, which recently became operational. Early results are proving very encouraging with its first observations due to be released in early July.

ESA's water mission keeps tabs on dry spring soils

May 13, 2011

Western Europe's exceptionally dry spring is clear to see in maps generated using data from SMOS. While these maps offer an interesting view of the stark difference in soil moisture compared to a year ago, the data are also ...

ESA's SMOS water mission goes live

May 21, 2010

( -- ESA's SMOS satellite completed its six-month commissioning this week and formally began operational life. This milestone means the mission is now set to provide much-needed global images of soil moisture ...

SMOS ready to ship to launch site

May 28, 2009

ESA's next Earth Explorer, SMOS, has just passed the all-important Flight Acceptance Review, signifying that all the elements that make up the mission are in place for launch later this year. The satellite can now be prepared ...

Horn of Africa drought seen from space

July 22, 2011

Drought in Somalia, Kenya, Ethiopia and Djibouti is pushing tens of thousands of people from their homes as millions face food insecurity in a crisis visible from space. ESA’s SMOS satellite shows that the region’s ...

Recommended for you

Carbon coating gives biochar its garden-greening power

October 20, 2017

For more than 100 years, biochar, a carbon-rich, charcoal-like substance made from oxygen-deprived plant or other organic matter, has both delighted and puzzled scientists. As a soil additive, biochar can store carbon and ...

Cool roofs have water saving benefits too

October 20, 2017

The energy and climate benefits of cool roofs have been well established: By reflecting rather than absorbing the sun's energy, light-colored roofs keep buildings, cities, and even the entire planet cooler. Now a new study ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Dec 16, 2011
ESAs SMOS satellite offers new insight into Earths carbon and methane cycles by mapping soil as it freezes and thaws

That will be welcomed news for those seriously interested in understanding Earths carbon and methane cycles!

Hopefully those presenting data from ESAs SMOS satellite will avoid bias that might cause the new results to be labeled as more politically-motivated AGW propaganda [1-4].


2. http://dl.dropbox...asks.pdf

3. http://joannenova...idation/

4. http://dl.dropbox...oots.pdf

Best wishes,
O. K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.