

Streamlining chip design

December 8 2011, by Larry Hardesty

Nirav Dave PhD '11, left, and Myron King. Photo: Melanie Gonick

In the same way that computing power moved from mainframes to the
desktop in the 1980s, it’s now moving from the desktop to handheld
devices. But that’s putting new demands on chip designers. Because
handhelds are battery powered, energy conservation is at a premium, and
many routine tasks that would be handled by software in a PC are
instead delegated to special-purpose processors that do just one thing
very efficiently. At the same time, handhelds are now so versatile that
not everything can be hardwired: Some functions have to be left to
software.

A hardware designer creating a new device needs to decide early on
which functions will be handled in hardware and which in software.
Halfway through the design process, however, it may become clear that
something allocated to hardware would run much better in software, or

1/5

https://phys.org/tags/hardware/
https://phys.org/tags/software/

vice versa. At that point, the designer has two choices: Either incur the
expense — including time delays — of revising the design midstream, or
charge to market with a flawed device.

At the Association for Computing Machinery’s 17th International
Conference on Architectural Support for Programming Languages and
Operating Systems, researchers from MIT’s Computer Science and
Artificial Intelligence Laboratory (CSAIL) will present a new system
that enables hardware designers to specify, in a single programming
language, all the functions they want a device to perform. They can
thereafter designate which functions should run in hardware and which
in software, and the system will automatically churn out the
corresponding circuit descriptions and computer code. Revise the
designations, and the circuits and code are revised as well. The system
also determines how to connect the special-purpose hardware and the
general-purpose processor that runs the software, and it alerts designers
if they try to implement in hardware a function that will work only in
software, or vice versa.

The new system is an extension of the chip-design language BlueSpec,
whose theoretical foundations were laid in the 1990s and early 2000s by
MIT computer scientist Arvind, the Charles W. and Jennifer C. Johnson
Professor of Electrical Engineering and Computer Science, and his
students. BlueSpec Inc., a company that Arvind co-founded in 2003,
turned that theoretical work into working, commercial code.

As Arvind explains, in the early 1980s, an engineer designing a new chip
would begin by drawing pictures of circuit layouts. “People said, ‘This is
crazy,’” Arvind says. “‘Why can’t I write this description textually?’” And
indeed, 1984 saw the first iteration of Verilog, a language that lets
designers describe the components of a chip and automatically converts
those descriptions into a circuit diagram.

2/5

https://phys.org/tags/chip+design/

BlueSpec, in turn, offers an even higher level of abstraction. Instead of
describing circuitry, the designer specifies a set of rules that the chip
must follow, and BlueSpec converts those specifications into Verilog
code. For many designers, this turns out to be much more efficient than
worrying about the low-level details of the circuit layout from the outset.
Moreover, BlueSpec can often find shortcuts that a human engineer
might overlook, using significantly fewer circuit components to
implement a given set of rules, and it can guarantee that the resulting
chip will actually do what it’s intended to do.

For the new paper, Arvind, his PhD student Myron King, and former
graduate student Nirav Dave (now a computer scientist at SRI
International) expanded the BlueSpec instruction set so that it can
describe more elaborate operations that are possible only in software.
They also introduced an annotation scheme, so the programmer can
indicate which functions will be implemented in hardware and which in
software, and they developed a new compiler that translates the
functions allocated to hardware into Verilog and those allocated to
software into C++ code.

Today, King says, “if I consider my algorithm just to be a bunch of
modules that I’ve hooked together somehow, and I want to move one of
these modules into hardware, I actually have to re-implement it. I have to
write it again in a different language. What we’re trying to give people is
a language where they can describe the algorithm once and then play
around with how the algorithm is partitioned.”

King acknowledges that BlueSpec’s semantics — describing an
algorithm as a set of rules rather than as a sequence of instructions — “is
a radical departure from the way that most people think about software.”
And indeed, among chip designers, Verilog is still much more popular
than BlueSpec. “But it’s precisely this way of thinking about computation
that allows you to generate both hardware and software,” King says.

3/5

Rajesh Gupta, the Qualcomm Professor in Embedded Microsystems at
the University of California at San Diego, who wasn’t involved in the
research, agrees. “Oftentimes, you need a dramatic change, not for the
sake of the change, but because the problem demands it,” Gupta says.
But, he adds, “hardware design is hard to begin with, and if some group
of very smart people at MIT — who are not exactly known for making
things simple — comes up with what looks like a very sophisticated
model, some people will say, ‘My chances of making a mistake here are
so high that I better not risk it.’ And hardware designers tend to be a little
bit more conservative, anyway. So that’s why the adoption faces
challenges.”

Still, Gupta says, the ability to redraw the partition between hardware
and software could be enticing enough to overcome hardware designers’
conservatism. If you’re designing hardware for portable devices, “you
need to be more power efficient than you are today,” Gupta says. But, he
says, a device that relies too heavily on software requires so many layers
of interpretation between the code and the circuitry that “by the time it
actually does anything useful, it has done many other things that are
useless, which are infrastructural.” To design systems that avoid such
unnecessary, energy-intensive work, “you need this integrated view of
hardware and software,” he says.

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Streamlining chip design (2011, December 8) retrieved 20 March 2024 from
https://phys.org/news/2011-12-chip.html

4/5

http://web.mit.edu/newsoffice/
https://phys.org/news/2011-12-chip.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://www.tcpdf.org

