Researchers discover new way to form extracellular vesicles

November 17, 2011, New York University School of Medicine

Researchers at NYU Langone Medical Center have discovered a protein called TAT-5 that affects the production of extracellular vesicles, small sacs of membrane released from the surface of cells, capable of sending signals to other cells. When released extracellular vesicles can affect tumor spread, blood clotting and inflammation. Their discovery gives new insight into how extracellular vesicles form, and reveals new potential strategies to manipulate diseases such as cancer.

The study was published online November 17, 2011 in .

"Very little is known about how cells release extracellular vesicles from their surfaces, so the discovery of TAT-5 opens the door to learning how to manipulate their numbers and thus affect ," said Jeremy Nance, PhD, associate professor of Cell Biology at NYU School of Medicine and a member of the Developmental Genetics Program at the Skirball Institute of Biomolecular Medicine.

Researchers at NYU Langone studied the embryo of the worm C. elegans and discovered that TAT-5 inhibits the budding of extracellular vesicles from the surface of cells. Several types of tumors produce extracellular vesicles that can induce tumor or metastasis. Researchers found they can use tat-5 mutants as a tool to study how extracellular vesicles are formed, enabling the design of strategies to regulate their formation. In the study, researchers also discovered that two proteins that regulate viral budding are involved in extracellular vesicle release, suggesting that budding of viruses and release of extracellular vesicles might occur through similar mechanisms, and that this research may reveal new strategies to inhibit viral spread.

Explore further: Breast cancer: How tumor cells break free and form metastases

Related Stories

New insight in nerve cell communication

December 22, 2009

Communication between nerve cells is vital for our bodies to function. Part of this communication happens through vesicles containing signalling molecules called neurotransmitters. The vesicle fuses with the nerve cell membrane; ...

How protein receptors on cells switch on and off

January 16, 2009

Cornell researchers have provided new insight into the molecular mechanism underlying an essential cellular system. They have discovered how receptors on cell surfaces turn off signals from the cell's environment, a function ...

Skywalker ensures optimal communication between neurons

April 1, 2011

Patrik Verstreken (VIB/K.U.Leuven, Belgium) has discovered the mechanism that ensures neurons can continue to send the right signals for long consecutive periods - a process that is disrupted in neurological diseases such ...

Recommended for you

Scale-eating fish adopt clever parasitic methods to survive

January 17, 2018

Think of them as extra-large parasites. A small group of fishes—possibly the world's cleverest carnivorous grazers—feeds on the scales of other fish in the tropics. The different species' approach differs: some ram their ...

How living systems compute solutions to problems

January 17, 2018

How do decisions get made in the natural world? One possibility is that the individuals or components in biological systems collectively compute solutions to challenges they face in their environments. Consider that fish ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.