Brain control? Shining light on pupil constriction

November 2, 2011, Johns Hopkins University
Human eye. Image: Wikipedia.

( -- You’ve seen it on television: A doctor shines a bright light into an unconscious patient’s eye to check for brain death. If the pupil constricts, the brain is OK, because in mammals, the brain controls the pupil. Or does it? Now, researchers at Johns Hopkins have discovered that in most mammals, in fact in most vertebrates, the pupil can constrict without any input from the brain. Their work, which also describes for the first time the molecular mechanism underlying this process, appears in the Nov. 3 issue of Nature.

“It was established more than 40 years ago that animals like amphibians and fish have photosensitive irises and don’t necessarily require the brain for the pupillary reflex, whereas it was thought that mammals generally required brain circuitry,” says King-Wai Yau, Ph.D., professor of neuroscience and ophthalmology at the Johns Hopkins University School of Medicine and member of the Institute for Basic Biomedical Sciences Center for Sensory Biology. “But in neither case did anyone know what the molecular switch was, and now we have found that it’s the pigment melanopsin.”

The research team examined isolated irises from a wide range of mammals by attaching a tiny meter that measures the force of the sphincter muscle that constricts the pupil. They then shined a bright light onto this muscle and measured any contraction. Irises from nocturnal animals including mouse, rat, hamster, dog, cat, rabbit and the Nile grass rat all showed responses to light. Irises from diurnal animals including guinea pig, ground squirrel and pig did not, nor did those from rhesus monkey, marmoset, owl monkey and bush baby, even though the owl monkey and bush baby are nocturnal.

“Most non-primate mammals are considered nocturnal or crepuscular — active at dawn and dusk — including those, like dogs, that have been domesticated and have picked up human circadian rhythms,” says Yau. “We don’t really know why primates, including us, as well as other daytime functioning animals don’t have this ability.” According to Yau, the eyes of nocturnal animals, because they function in the dark, contain more cells that are sensitive to low light and exposure to could cause eye damage. Perhaps, he suggests, the built-in pupil reflex is a good way to protect the eye.

“So of course we wanted to know what pigment molecules are involved in triggering pupil constriction,” says Yau. Having previously genetically engineered mice to lack melanopsin, the team first tested the pupillary light reflex on irises from these mice. “That was a really exciting result—they didn’t respond to the light,” says Tian Xue, a research associate with Yau. They also tested mice engineered to lack other light-capturing pigments, but all of them responded normally, suggesting that only melanopsin is required for the local pupil reflex. Using mouse genetics, the team then continued to try to identify other proteins that work with melanopsin to cause the pupil to contract in response to light.

Because melanopsin is closely related to the pigment responsible for capturing light in fly eyes, and that molecular pathway has been well studied, Yau’s team hypothesized that the mammalian counterparts to these fly molecules might be what works with melanopsin. So they tested mice engineered to lack some of these molecules. They found that irises from mice lacking the PLC enzyme were unresponsive to light, showing that PLC also is involved in this reflex.

There still are a lot of things we don’t know that we would like to study,” says Yau. “Now that we know what captures the light and starts the local reflex, we would like to know what proteins in the muscle trigger the actual contraction.”

Explore further: Bright lights, not-so-big pupils

Related Stories

Bright lights, not-so-big pupils

December 31, 2008

A team of Johns Hopkins neuroscientists has worked out how some newly discovered light sensors in the eye detect light and communicate with the brain. The report appears online this week in Nature.

An 'eye catching' vision discovery

July 26, 2009

Nearly all species have some ability to detect light. At least three types of cells in the retina allow us to see images or distinguish between night and day. Now, researchers at the Johns Hopkins School of Medicine have ...

Why animals don't have infrared vision

June 9, 2011

On rare occasion, the light-sensing photoreceptor cells in the eye misfire and signal to the brain as if they have captured photons, when in reality they haven't. For years this phenomenon remained a mystery. Reporting in ...

Recommended for you


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Nov 02, 2011
Exactly this peripheral sensory local cell activity is the activity SENT to the brain. The pathway to and in the brain is determined by the sense that will eventually send the sensory cell's local activity - the sense undergoing local stimuli - to TARGET those neurons that are 'correct' neurons simply by way of LOCATION. A location already determined and established by the senses. The correctly targeted neurons was determined by pathways already established BY EMBRYONIC SENSORY LOCAL CELL ACTIVITY DURING GESTATION.

That is the 'big' picture. And your puzzle piece to the big picture is noble prize worthy - if that is what impresses you.

Kudos and congratulations to all of you.
not rated yet Nov 07, 2011
Considering that the only other cells in mammals to express melanopsin are are subset of the retinal ganglion cells (ie, neurons), I suspect that what the researchers were detecting was the effect of melanopsin expression in ciliary nerve endings that innervate the ciliary muscle, not in the muscle itself. After all, it would be hard to unpick the nerve endings from the actual muscle cells.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.