
 

Advanced mathematical techniques enable
AUVs to survey large, complex and cluttered
seascapes
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Since the 1970s, when early autonomous underwater vehicles (AUVs)
were developed at MIT, Institute scientists have tackled various barriers to
robots that can travel autonomously in the deep ocean. This four-part
series examines current MIT efforts to refine AUVs’ artificial intelligence,
navigation, stability and tenacity.

Imagine dropping an underwater vehicle into the ocean and having it
survey the ocean floor for debris from an accident or examine a ship’s
hull for signs of damage. Without any outside guidance or prior
knowledge, the vehicle would traverse the target area in a methodical
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fashion, never repeating itself or going astray, all the while generating a 
map that shows the surface of interest.

An MIT team has developed advanced mathematical techniques that
enable such a scenario to occur — even when the area being examined is
large, complex and cluttered, and the information coming from the
vehicle’s sensors is not always clear and accurate.

“A big problem for an autonomous underwater vehicle is knowing where
it’s been, where it is now and where it should go next — without any
outside help,” says John J. Leonard, a professor of mechanical and ocean
engineering and a member of the MIT Computer Science and Artificial
Intelligence Laboratory. Navigating underwater is tricky. Radio waves
don’t propagate through seawater, so an AUV can’t use GPS as a guide.
Optical methods don’t work well. Computer vision is difficult, even for
terrestrial robots; water reflects and refracts light in complex ways, and
visibility may be poor due to murkiness and turbidity.

What’s left? Sound waves, which can be monitored by acoustic sensors.
To help an underwater vehicle navigate, a deepwater energy company
may drop a network of acoustic transponders onto the seafloor. The
vehicle exchanges acoustic “pings” with the transponders, generating
data with which it can calculate its position. But sometimes the signal
bounces off extraneous objects, producing inaccurate data. Sometimes
several robots share multiple transponders, leading to confusion. And
sometimes deploying enough transponders to cover a sufficiently large
area is prohibitively expensive.

“So here’s the challenge. You want to place the AUV at an unknown
location in an unknown environment and, using only data from its
acoustic sensors, let it incrementally build a map while at the same time
determining its location on the map,” Leonard says. Robot designers
have studied the so-called mapping problem for decades, but it’s still not
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solved. As Leonard notes, it’s a chicken-and-egg problem: You need to
know where you are to build the map, but you need the map to know
where you are.

To illustrate how robotic mapping works — and doesn’t work —
Leonard considers the aftermath of a hypothetical accident. The seabed
is covered with debris, and officials need to figure out where it all is.
Ideally they’d send down an AUV and have it cruise back and forth in a
lawnmower-type pattern, recording information about where it is and
what it sees.

One conventional way of accomplishing that task is using dead
reckoning. The AUV starts out at a given position and simply keeps
track of how fast and in what direction it’s going. Based on that
information, it should know where it is located at any point in time. But
the calculations to determine its position quickly become wrong, and
over time, the error grows “without bounds.” Leonard likens it to
mowing the lawn blindfolded. “If you just use dead reckoning, you’re
going to get lost,” he says. Using expensive accelerometers, gyroscopes
and other equipment will make the error grow more slowly, but not
eliminate it entirely.

So how can an AUV use poor data from relatively inexpensive sensors to
build a map? To tackle that problem, Leonard and his team have been
using a technique called Simultaneous Localization and Mapping, or
SLAM. With this approach, the AUV records information, builds a map
and concurrently uses that map to navigate. To do so, it keeps track of
objects it observes — in the accident example, say, a particular piece of
debris on the seafloor. When the AUV detects the same object a second
time — perhaps from a different vantage point — that new information
creates a “constraint” on the current map. The computer program
generating the map now adds that object and at the same time optimizes
the map to make its layout consistent with this new constraint. The map

3/6



 

adjusts, becoming more accurate.

“So you can use that information to take out the error, or at least some of
the error, that has accrued between the first time you saw that object and
the next time you saw it,” Leonard says. Over time, the program
continues to optimize the map, finding the version that best fits the
growing set of observations of the vehicle’s environment.

In some cases, the AUV may see the same object again just a few
minutes later. Identifying it as the same object is easy. But sometimes —
especially when surveying a large area — the AUV may see the same
object early on and then again much later, possibly even at the end of its
travels. The result is a “loop closing” constraint. “That’s a very powerful
constraint because it lets us dramatically reduce the error,” Leonard says.
“That helps us get the best estimate of the trajectory of the vehicle and
the structure of the map.”

While SLAM has been in use for several decades, the Leonard group has
made significant advances. For example, they’ve come up with new
computational algorithms that can calculate the most likely map given a
set of observations — and can do it at high speed and with
unprecedented accuracy, even as new sensor information continues to
arrive. Another algorithm can help determine whether a feature that the
robot sees now is in fact the same one it saw in the past. Thus, even with
ambiguous data, the algorithm can reject incorrect “feature matching”
that would have made the map less rather than more accurate.

Finally, their methods ensure that uncertainty is explicitly addressed.
Leonard emphasizes that SLAM may not produce a perfect map. “It’s
easy for a vehicle to get fooled by errors in the acoustic information,” he
says. “So we don’t want to be overconfident. There’s a certain inherent
uncertainty to the sensor data, and it’s important to get that uncertainty
right. So we’re not only building the map but also including the right
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error bounds on it.”

A problem of particular interest to Leonard is using AUVs to enable
rapid response to accidents and other unforeseen events. For example,
one challenge during the April 2010 Deepwater Horizon oil spill was
determining whether there was a spreading plume of oil and if so,
tracking where it was going. A network of AUVs working together could
play a critical role in carrying out such tasks.

To that end, Leonard and his team are developing techniques that will
enable AUVs to communicate with one another so they can navigate and
collect information cooperatively. “If they can share information, they
can accumulate data far more quickly than if they work alone,” he says.
“Together, they’ll be able to sweep a large area and quickly produce the
best possible map so that people can understand what’s going on and
develop and implement an effective response.”

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching. 

  More information: Next: Biomimetic pressure sensors help guide
oceangoing vessels.
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