Stanford summer course yields touchscreen Braille writer

October 10, 2011 By Andrew Myers

Each summer, under the red-tiled roofs and sandstone of Stanford, the Army High-Performance Computing Research Center (AHPCRC) invites a select group of undergraduates from across the country gather for a two-month immersion into the wonders of advanced computing.

Some of the undergraduates are gathered into teams. Some work alone. All are assigned mentors and tasked with a challenge. They compete, American Idol-style, for top honors at the end of the summer.

The video will load shortly
Responding to touch, a virtual keyboard appears at the user's fingertips.

The competition is made possible in part by a collaboration between the U.S. Army and several university and industry partners that makes up the AHPCRC.

Adam Duran is one such undergraduate, a student both lucky and good. He is now in his senior year at New Mexico State University. Last June, he came to Stanford at the suggestion of one of his professors. His mentors were Adrian Lew, an assistant professor of mechanical engineering, and Sohan Dharmaraja, a at Stanford studying .

"Originally, our assignment was to create a application that would use the camera on a mobile device – a phone or tablet – to transform pages of Braille into readable text," said Duran. "It was a cool challenge, but not exactly where we ended up."

Bigger fish

Even before Duran arrived for the summer, Lew and Dharmaraja began to talk to the Stanford Office of Accessible Education, people whose profession is helping blind and visually impaired students negotiate the world of higher learning. It became clear that there were bigger fish to fry.

While a Braille character reader would be helpful to the blind, Lew and Dharmaraja learned, there were logistics that were hard to get around.

"How does a orient a printed page so that the computer knows which side is up? How does a blind person ensure proper lighting of the paper?" said Duran. "Plus, the technology, while definitely helpful, would be limited in day-to-day application."

"It was a nice-to-have, not a must-have," said Dharmaraja.

So, the three began to ask questions. That is when they stumbled upon a sweet spot.

"The killer app was not a reader, but a writer," said Dharmaraja.

"Imagine being blind in a classroom, how would you take notes?" said Lew. "What if you were on the street and needed to copy down a phone number? These are real challenges the blind grapple with every day."

There are devices that help the blind write Braille, to send email and so forth, but they are essentially specialized laptops that cost, in some cases, $6,000 or more. All for a device of limited functionality, beyond typing Braille, of course.

"Your standard tablet has more capability at a tenth the price," said Duran.

"So, we put two and two together. We developed a tablet Braille writer," said Dharmaraja, "A touchscreen for people who can't see."

First, however, the student-mentor team had to learn Braille. Originally developed for the French military, Braille is a relatively simple code with each character made up of variations of six dots – or bumps, really – arranged in a 2-by-3 matrix. The blind read by feeling the bumps with their fingertips.

As any computational mathematician will tell you, such a matrix yields two-to-the-sixth minus one variations, or 63 possible characters. These 63 characters are enough for a Western alphabet plus 10 numerical digits, with several left over for punctuation and some special characters.

Over the years, however, those 63 characters got quickly gobbled up – through the addition of character-modification keystrokes, the total grew and now includes chemical, mathematical and other symbols.


A modern Braille writer looks like a laptop with no monitor and an eight-key keyboard – six to create the character, plus a carriage return and a delete key.

Duplicating the Braille keypad on a touch-based tablet seemed simple enough, but there was at least one significant challenge: How does a blind person find the keys on a flat, uniformly smooth glass panel?

Dharmaraja and Duran mulled their options before arriving at a clever and simple solution. They did not create virtual keys that the fingertips must find; they made keys that find the fingertips. The user simply touches eight fingertips to the glass, and the keys orient themselves to the fingers. If the user becomes disoriented, a reset is as easy as lifting all eight fingers off the glass and putting them down again.

"Elegant, no?" said Lew. "The solution is so simple, so beautiful. It was fun to see."

Beyond the price difference, touchscreens offer at least one other significant advantage over standard Braille writers: "They're customizable," Dharmaraja noted. "They can accommodate users whose fingers are small or large, those who type with fingers close together or far apart, even to allow a user to type on a tablet hanging around the neck with hands opposed as if playing a clarinet."

"No standard Braille writer can do this," said Professor Charbel Farhat, the chair of the Aeronautics and Astronautics Department and executive director of the summer program. "This is a real step forward for the blind."

Showing off

In a demo, Duran donned a blindfold and readied himself before the touchscreen. He typed out an email address and a simple subject line. Then he typed one of the best-known mathematical formulas in the world, the Burgers Equation, and followed with the chemical equation for photosynthesis – complex stuff – all as if writing a note to his mother.

For Duran, who has an uncle who is blind, the greatest joy was in seeing a blind person using his creation for the first time. "That was so awesome," he said. "I can't describe the feeling. It was the best."

In the immediate future, there are technical and legal hurdles to address, but someday, perhaps soon, the blind and visually impaired may find themselves with a more cost-effective Braille writer that is both portable and blessed with greater functionality than any device that went before.

"AHPCRC is an excellent model for outreach, which not only trains undergraduate students in computational sciences but also exposes students to real-world research applications," said Raju Namburu, the cooperative agreement manager for AHPCRC.

The center addresses the Army's most difficult scientific and engineering challenges using high-performance computing. Stanford University is the AHPCRC lead organization with oversight from the Army Research Laboratory.

As for his summer courses, Farhat is optimistic. "Let's remember," he points out, "This was a two-month summer project that evolved because a few smart people asked some good questions. I'm always amazed by what the students accomplish in these courses, but this was something special. Each year it seems to get better and more impressive."

Explore further: Snail Braille reader could read books to the blind

Related Stories

Snail Braille reader could read books to the blind

May 6, 2011

( -- To most of us, Braille is largely a mystery. It feels really cool, but the idea of actually reading it is kind of a pipe dream. Our sense of touch simply is not as sensitive as that of a blind person. That ...

Braille keyboard provides new features

March 11, 2006

Researchers have developed a new Braille computer keyboard with features that are particularly useful for transcribing scientific texts and musical scores.

Students design portable Braille label maker

September 21, 2009

( -- A device that started out as a class project last fall is moving rapidly toward becoming a commercial product that could make the lives of millions of visually impaired people a bit easier.

Recommended for you

Google, EU dig in for long war

July 20, 2017

Google and the EU are gearing up for a battle that could last years, with the Silicon Valley behemoth facing a relentless challenge to its ambition to expand beyond search results.

Strengthening 3-D printed parts for real-world use

July 20, 2017

From aerospace and defense to digital dentistry and medical devices, 3-D printed parts are used in a variety of industries. Currently, 3-D printed parts are very fragile and only used in the prototyping phase of materials ...

Swimming robot probes Fukushima reactor to find melted fuel

July 19, 2017

An underwater robot entered a badly damaged reactor at Japan's crippled Fukushima nuclear plant Wednesday, capturing images of the harsh impact of its meltdown, including key structures that were torn and knocked out of place.

Microsoft cloud to help Baidu self-driving car effort

July 19, 2017

Microsoft's cloud computing platform will be used outside China for collaboration by members of a self-driving car alliance formed by Chinese internet search giant Baidu, the companies announced on Tuesday.

Making lab equipment on the cheap

July 18, 2017

Laboratory equipment is one of the largest cost factors in neuroscience. However, many experiments can be performed with good results using self-assembled setups involving 3-D printed components and self-programmed electronics. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.