

An oracle for object-oriented programmers

October 7 2011, by Larry Hardesty

In the last 40 years, the major innovation in software engineering has
been the development of what are called object-oriented programming
languages. “Objects” are, effectively, repositories for the computational
details of a program, which let the programmer concentrate on the big
picture. A complex computer program, with millions of lines of code,
can be distilled into some fairly intuitive interactions between objects.

For programmers building a large application from scratch, object-
oriented programming is a boon, allowing them to add new functions or
make major revisions by changing just a few lines of code. But for a
programmer dropped into the middle of a massive development project,
trying to navigate the thicket of existing objects can be bewildering.
Learning what the objects are and what they do might take days or even
weeks.

1/5

At the Association for Computing Machinery’s SPLASH conference at
the end of the month, researchers from MIT’s Computer Science and
Artificial Intelligence Laboratory (CSAIL) will present a new system
that automatically determines how objects in a large software project
interact, so it can inform latecomers which objects they will need to
design certain types of functions. The system could be of particular use
to programmers working with open-source software, whose licensing
terms require that its underlying code be publicly disclosed. Someone
wishing to simply add a function to a common open-source program, for
instance, may not want to spend the week it takes to get up to speed on
all the program’s objects.

“Part of the promise of open source is that if you don’t like what it does,
you can go in and change it,” says Armando Solar-Lezama, the NBX
Career Development Assistant Professor of Computer Science and
Engineering, who led the work. “But if you have this huge learning
curve, then you’re not going to be able to do that. You’re going to end up
with a small group of experts who go and do all the stuff, and everyone
else just uses it.”

Objectivity

The idea of the object is easiest to understand when the programmer’s
object — a cluster of data and a set of associated functions —
corresponds to a virtual object on-screen. A programmer wishing to add
a new window to an application, for instance, simply writes a line of
code calling up a new window object; the window comes complete with
things like scroll bars and size-adjustment tabs and a display line for text.
If the programmer wants to add a button to the window, she calls up a
new button object.

But after that, things can get more complicated. To describe the layout
for the window, the programmer may have to invoke an object called

2/5

http://people.csail.mit.edu/kuat/papers/oopsla11-matchmaker.pdf

Layout; to enable the button to register mouse clicks, she may have to
invoke an object called EventListener. These don’t appear on-screen as
virtual objects, but in the programmer’s sense, they’re objects
nonetheless.

“In some respects, this is a great design,” Solar-Lezama says. “It’s
beautifully engineered to allow you to just take out little pieces of the
functionality and replace them without having to go and write lots of
code. But the price of that is that you have to know how it works before
you can use it.”

Solar-Lezama and his students Zhilei Xu and Kuat Yessenov have
developed a new system they call Matchmaker, because it takes as input
the names of two objects and describes how to get them to interact with
each other. To demonstrate how it works, the researchers applied it to an
open-source program called Eclipse, which computer scientists use to
develop programming tools for new computer languages.

In the Eclipse framework, the window that displays code written in the
new language is called an Editor; a function that searches the code for
symbols or keywords is called a Scanner. That much a seasoned
developer could probably glean by looking over the Eclipse source code.
But say you want to add a new Scanner to Eclipse, one that allows you to
highlight particular symbols. It turns out that, in addition to your Editor
and Scanner objects, you would need to invoke a couple of objects with
the unintuitive names of DamageRepairer and PresentationReconciler
and then overwrite a function called getPresentationReconciler in yet a
third object called a SourceViewerConfiguration.

With Matchmaker, the developer would simply type the words “editor”
and “scanner” into the query fields, and the program would return the
names of the objects that link them and a description of the
modifications required to any existing functions.

3/5

Observe and detect

Matchmaker builds up its database of object linkages in a program’s
source code by monitoring the program’s execution. In the case of
Eclipse, it noticed that every time a Scanner was invoked, so were the
other objects.

On occasion, Matchmaker’s inferences may turn out to be wrong. But
even in those cases, Solar-Lezama argues, some guidance is better than
none. To test that thesis, Solar-Lezama and his colleagues did a user
study with eight programmers new to Eclipse. All of them were asked to
perform the same task, which required linking up two different types of
objects. Four of them were allowed to use Matchmaker, and four
weren’t. Moreover, the example was specifically chosen so that the
instructions provided by Matchmaker were incomplete: They left out
one crucial step. Nonetheless, Solar-Lezama says, the programmer who
completed the task most quickly without Matchmaker still took longer
than the slowest of the programmers who used it.

“I think the user study is the linchpin that makes this seem like it’s got
real practical implications,” says Jeff Foster, an associate professor at the
University of Maryland who’s part of the Department of Computer
Science’s Programming Languages group. “If you can hand the tool to
somebody else and they can be better programmers when they’re using it,
that’s a great result.”

Foster points out that Matchmaker can’t answer all the questions that a
programmer new to an application might have. Matchmaker is useful, he
says, “in cases where you can guess that you needed an X and Y, and you
could find the names of those components, and you can ask how they’re
connected. But there’s a whole other set of questions where you don’t
even know what components to use.”

4/5

Still, Foster says, in the instances where Matchmaker is applicable,
“you’re going to get result that’s vastly superior. You’re going to get a
result in seconds or minutes instead of having to search on Google, filter
out a lot of bad answers, figure out what people meant when they
explained various things — if the tool works for the problem, it’s very
useful.”

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: An oracle for object-oriented programmers (2011, October 7) retrieved 26 April 2024
from https://phys.org/news/2011-10-oracle-object-oriented-programmers.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

http://web.mit.edu/newsoffice/
https://phys.org/tags/innovation/
https://phys.org/news/2011-10-oracle-object-oriented-programmers.html
http://www.tcpdf.org

