Astronomy without a telescope - Green peas

Astronomy without a telescope - Green peas
A Green Pea galaxy - which may be an analogue of the universe's first galaxies. Credit: Galaxy Zoo/SDSS.

The ground-breaking discovery of a new class of galaxies, Green Peas, in 2009 by a group of Galaxy Zoo volunteers – have recently been followed up by further observations in the radio spectrum.

The were first identified from Sloane Digital Sky Survey data – and then in Hubble Space Telescope archive images. Now radio observations of Green Pea galaxies (from GMRT and VLA) have led to some new speculation on the role of magnetic fields in early galaxy formation.

Green Pea galaxies were so named from their appearance as small green blobs in Galaxy Zoo images. They are low mass galaxies, with low metallicity and high rates – but, surprisingly, are not all that far away. This is surprising given that their low metallicity means they are young – and being not very far away means they formed fairly recently (in universal timeframe terms).

Most nearby galaxies reflect the 13.7 billion year old age of the universe and have high metallicity resulting from generations of stars building elements heavier than hydrogen and helium through fusion reactions.

But Green Peas do seem to have formed from largely unsullied clouds of hydrogen and helium that have somehow remained unsullied for much of the universe’s lifetime. And so, Green Peas may represent a close analogue of what the universe’s first galaxies were like.

Their green color comes from strong OIII (ionized oxygen) emission lines (a common consequence of lots of new star formation) within a redshift (z) range around 0.2. A redshift of 0.2 means we see these galaxies as they were when the universe was about 2.4 billion years younger (according to Ned Wright’s cosmology calculator). Equivalent early universe galaxies are most luminous in ultraviolet at a redshift (z) between 2 and 5 – when the universe was between 10 and 12 billion years younger than today.

Anyhow, studying Green Peas in radio has yielded some interesting new features of these galaxies.

Astronomy without a telescope - Green peas
Spectroscopic data from Green Pea galaxy 587739506616631548 - demonstrating the prominent OIII emission lines which are characteristic of Green Pea galaxies. Credit: Galaxy Zoo.

With the notable exception of Seyfert galaxies, where the radio output is dominated by emission from supermassive black holes, the bulk radio emission from most galaxies is a result of new star formation, as well as synchrotron radiation arising from magnetic fields within the galaxy.

Based on a number of assumptions, Chakraborti et al are confident they have discovered that Green Peas have relatively powerful magnetic fields. This is surprising given their youth and smaller size – with strengths of around 30 microGauss, compared with the Milky Way’s approximately 5 microGauss.

They do not offer a model to explain the development of Green Pea magnetic fields, beyond suggesting that turbulence is a likely underlying factor. Nonetheless, they do suggest that the strong magnetic fields of Green Peas may explain their unusually high rate of star formation – and that this finding suggests that the same processes existed in some of the first to appear in our 13.7 billion year old universe.


Explore further

Galaxy Zoo Hunters Help Astronomers Discover Rare 'Green Pea' Galaxies

More information: Chakraborti, et al., Radio Detection of Green Peas: Implications for Magnetic Fields in Young Galaxies

Cardamone, et al., Galaxy Zoo Green Peas: Discovery of A Class of Compact Extremely Star-Forming Galaxies.

Source: Universe Today
Citation: Astronomy without a telescope - Green peas (2011, October 25) retrieved 22 April 2019 from https://phys.org/news/2011-10-astronomy-telescope-green-peas.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Oct 25, 2011
neat.

Oct 26, 2011
This too is no problem for LaViolette's steady-state cosmology. New gas slowly materializes over long time periods in intergalactic space, forming the basis for pristine gas clouds found therein which can condense into new young galaxies, even in recent times.

Nov 20, 2011
LaViolette has commented that his model is not properly described as 'steady-state', but rather as 'continuous-creation.'

New sub-atomic particles can form spontaneously from the undetectable underlying matrix of even smaller 'objects', anywhere. However, the nucleation potential is greatly enhanced in regions of higher mass density, such as massive stars. In intergalactic space, this process would be extremely slow. Still, said space should contain some pristine gas, as new subatomic particles combine to form hydrogen over time.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more