The unexpected relatives of smallpox

September 9, 2011
Dr. Fasseli Coulibaly

( -- A protein shared by the simple viruses that infect single-cell organisms, and their highly complex counterparts that affect mammals, could hold to the key to understanding and ultimately neutralising the deadly pox family of viruses. 

In research published today in PLoS Pathogens Dr. Fasseli Coulibaly, of Monash University's Department of Biochemistry and Molecular Biology, and Dr. Alok Mitra from the University of Auckland, have discovered that a , D13, is common to poxvirus and viruses infecting bacteria.

Dr. Coulibaly said the discovery was important from both evolutionary and public health perspectives.

"Being common to both families of viruses means D13 may have existed in its current form for billions of years. These viruses have been on separate development paths for a long time."

"These long-distance evolutionary links are difficult to find and can only be discovered using technology like X-ray crystallography using the Australian Synchrotron," said Dr. Coulibaly 

Dr. Coulibaly said the discovery should lead to a better understanding of the poxvirus family.

"Given the common element, we can use what's been discovered about much simpler forms of viruses that contain D13, to better understand poxviruses. It's a Rosetta Stone for poxvirus."

Smallpox, the best known of the human poxviruses has been eradicated and only two official, highly secure stocks remain, meaning a small risk of deliberate release. However, other forms of pox infect animals and have the potential to jump species to humans.

"We've discovered how D13 plays its key role in the development of vaccinia, the weakened form of smallpox," said Dr. Coulibaly.

"Potentially, this means we can develop drugs that target D13 and so block the formation of poxvirus. 

"As D13 is common to all poxviruses, the potential exists to develop anti-viral drugs that are effective against a whole family of , similar to effect of antibiotics on bacterial infections."

Dr. Coulibaly and his team plan to further develop and test D13 inhibitors as a potential basis for antiviral medication. 

Explore further: Study may help prevent bioterrorism

Related Stories

Study may help prevent bioterrorism

July 24, 2006

U.S. scientists say they've shown a protein in the nucleus of smallpox victims' cells triggers progression of smallpox-related illnesses.

Researchers make breakthrough against poxviruses

January 23, 2009

Smallpox has a nasty history throughout the world. Caused by poxviruses, smallpox is one of the few disease-causing agents against which the human body's immune system is ineffective in its defense.

Mystery solved: Scientists now know how smallpox kills

December 22, 2009

A team of researchers working in a high containment laboratory at the Centers for Disease Control and Prevention in Atlanta, GA, have solved a fundamental mystery about smallpox that has puzzled scientists long after the ...

Recommended for you

What makes tissue soft and yet so tough

November 20, 2017

Engineers at ETH Zurich have discovered that soft biological tissue deforms very differently under tension than previously assumed. Their findings are already being put to use in medical research projects.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.