Study finds protein critical to breast cancer cell proliferation, migration

September 15, 2011

Researchers have found that a protein linked to cell division and migration and tied to increased cell proliferation in ovarian tumors is also present at high levels in breast cancer specimens and cell lines. The protein, dubbed "UNC-45A," was also determined to be more active in breast cancer cells than in normal breast cells.

University of Texas Medical Branch at Galveston scientists describe these findings and others in a paper now online in the .

"As a result of earlier work, we hypothesized that UNC-45A should be critical in several steps related to cancer cell metastasis," said UTMB professor Henry Epstein. "This investigation confirmed that hypothesis, and also showed us significant aspects of UNC-45A's behavior that were previously unknown."

UNC-45A is what is known as a "chaperone" protein, a molecule that helps other proteins function more effectively. In the case of UNC-45A, the protein is myosin, which can be thought of as a tiny machine that interacts with a long, fiber-like protein called actin to alter cell shape and movement. In the last stage of cell division, for example, myosin and actin proteins pinch the cell tightly about its midsection, finally splitting a single cell into two .

"What we believe is really important in this paper is that increased UNC-45A in cancer cells leads to enhanced myosin and actin activity, which leads to increased rates of and increased rates of cancer-cell invasion or migration," Epstein said. "Those are critical phenomena and could be significant in the development of new therapeutic approaches."

Epstein's group measured UNC-45A's effect on myosin and actin activity by comparing the activity observed in cells from a highly metastatic cancer cell line with that seen in cells from the same line in which UNC-45A production had been blocked. The difference was substantial, strongly suggesting that high levels of UNC-45A drove the cells' high rate of proliferation and invasion of other tissues.

Further exploring the details of UNC-45A, the UTMB team discovered that the protein actually exists in two slightly different isoforms, one made up of 944 amino acids and the other of 929 amino acids. While these two isoforms interacted similarly with myosin, the breast cells' protein breakdown apparatus attacked the 944 amino acid-isoform much more vigorously than the 929 amino-acid isoform; as a result, the 929 amino-acid isoform was found in much greater levels.

"In the , you get a disregulation of the two, because the larger one gets turned over more rapidly than the smaller one, and we can actually see this very dramatically," Epstein said.

Explore further: Researchers find level of special protein is critical to proper formation of muscles

Related Stories

Researchers find clue to stopping breast-cancer metastasis

November 17, 2008

If scientists knew exactly what a breast cancer cell needs to spread, then they could stop the most deadly part of the disease: metastasis. New research from the University of North Carolina at Chapel Hill School of Medicine ...

LIMK plays a key role in cancer metastasis

September 27, 2010

Researchers have shown that LIM kinase (LIMK), an important regulator of actin cytoskeleton dynamics, plays a key role in cancer metastasis. The study appears online on September 27 in The Journal of Cell Biology.

Breakthrough uses light to manipulate cell movement

August 19, 2009

One of the biggest challenges in scientists' quest to develop new and better treatments for cancer is gaining a better understanding of how and why cancer spreads. Recent breakthroughs have uncovered how different cellular ...

Recommended for you

Live fast die young: Updating signal detection theory

October 18, 2017

Signal Detection Theory is a popular and well-established idea that has influenced behavioral science for around 50 years. Essentially, the theory holds that in a predator-prey relationship, prey animals will show more wariness ...

Tiny protein coiled coils that self-assemble into cages

October 17, 2017

(Phys.org)—A large team of researchers with members from Slovenia, the U.K, Serbia, France and Spain has developed a technique that causes proteins to self-assemble into geometric shapes on demand. In their paper published ...

The importance of asymmetry in bacteria

October 17, 2017

New research published in Nature Microbiology has highlighted a protein that functions as a membrane vacuum cleaner and which could be a potential new target for antibiotics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.