Creating desirable materials requires salt, but not space

September 27, 2011
The scientists found that nanoparticles grow between the dips in the hemicylindrical templates. However, if the particles outgrow the crevices, the template changes from mounds into a grass-like surface, allowing the particles to grow inconsistently, coalescing into larger clusters.

( -- When synthesizing specialized materials for energy-packed batteries, the problem is the template. The pattern for self-assembling the highly desired nanometer-sized spheres falls apart, producing irregular metal oxide clumps. Scientists at Pacific Northwest National Laboratory determined how to keep the template intact. The answer is as simple as adding salt to the process.

Electric vehicles and the nation's would both benefit from energy-dense, long-lasting batteries. could travel greater distances between charges. The power grid could tap into stored wind and solar energy. Such batteries require new materials with specific nanosized features. Unfortunately, designing these materials has been a process of trial and error. Scientists would prefer to design templates, mix together reactants, and allow the materials to assemble themselves. The problem is that the templates don't last. With the answers from this study, scientists can manufacture identical particles that are then assembled into battery electrodes.

"This research provides fundamental answers needed to produce high-quality, well-defined materials that will work as electrodes in lithium-ion batteries and next-generation lithium-air batteries," said Dr. Maria Sushko, a PNNL materials scientist who worked on the study with Dr. Jun Liu.

Drawing upon experimental research, the PNNL researchers conducted on template stability for titanium dioxide and other nanoparticle self-assembly. The analysis was a classical , or cDFT, study.

The team examined the template, which consists of two parts. First, the base is a layer of well-defined, conductive graphene.  The second part is a surfactant. The surfactant is a molecule that defined by its "head" and "tail" chemistry. The head of the molecule is hydrophobic or "water fearing" and attaches to the graphene. The tail is hydrophilic and interacts with the solution containing the ingredients for forming the desired metal oxide particles. The surfactant forms small mounds on the graphene that act as a template for the nanoparticle formation.

"But unless the surfactants form a stable structure, the whole of what you're building falls apart," said Sushko.

The scientists discovered that key to template stability was introducing a salt, specifically doubly charged cations and singly charged anions, into the mix. Then, the team used this result to predict how titanium dioxide nanoparticles grow on the template. They found that the particles grow between the dips in the hemicylindrical templates. However, if the particles outgrow the crevices, the template changes from mounds into a smooth, grass-like surface. Then, the particles grow inconsistently, coalescing into larger clusters.

"If we use the results of this paper [published in the Journal of Physical Chemistry B], we can grow nanoparticles in the confined matter to create larger, uniformly sized nanoparticles of metal oxides, such as , which is very important to creating the materials you need for for batteries," said Sushko.

What's Next: The team is working on an experiment-based study to develop a thorough understanding of self-assembly and nucleation processes involved in constructing nanocomposite materials. This upcoming study and others like it are needed to unravel the mysteries of self-assembly and allow scientists to control material synthesis.

Explore further: Cow Brain Protein May Hold Alternative Energy Promise

More information: Sushko ML and J Liu. 2011. "Surfactant Two-Dimensional Self-Assembly under Confinement." Journal of Physical Chemistry B 115(15):4322-4328. DOI:10.1021/jp2003497

Related Stories

Cow Brain Protein May Hold Alternative Energy Promise

April 20, 2010

( -- Of all the ideas that hold promise in alternative energy, cow brains are an odd candidate. They do not fit into the list of usual plant-based subjects, such as corn or switch grass. But cow brains contain ...

Microfabrication: The light approach

March 4, 2011

Materials that conduct electricity but which are also transparent to light are important for electronic displays, cameras and solar cells. The industry’s standard material for these applications is indium tin oxide (ITO), ...

Recommended for you

Breakthrough in ultra-fast data processing at nanoscale

October 20, 2017

A research team from the National University of Singapore has recently invented a novel "converter" that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.

Art advancing science at the nanoscale

October 18, 2017

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Sep 29, 2011
nano scale requiring salts to get things done.

This is pure alchemy. alchemical salts for nano division is the entire deal. Alchemy is all about such things.

This is downright bizarre, that 'science' can speak about these sort of things and yet ignore the origins of all science, which utilized such in perfection and in engineered practicality, thousands of years ago: alchemy.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.