CERN sets course for extra-low-energy antiprotons

September 29, 2011, CERN

The kick-off meeting for ELENA, the Extra Low Energy Antiproton Ring, starts today at CERN. Approved by CERN Council in June this year, ELENA is scheduled to deliver its first antiprotons in 2016. This week’s kick-off meeting brings together scientists from Canada, Denmark, France, Germany, Japan, Sweden, the UK and the USA. The project is led by CERN.

“ELENA is a new facility aimed to deliver at the lowest energies ever reached in order to improve the study of ,” said CERN’s Stéphan Maury, Head of the ELENA project.

ELENA will consist of a small new decelerator ring that will be installed in same building that houses CERN’s existing Antiproton Decelerator (AD). It will slow antiprotons down to under a fiftieth of the current AD energy, bringing an improvement of a factor of 10-100 in antiproton trapping efficiency. At the AD, antiprotons have to be slowed down by passing them through a series of foils, a process that results in the loss of some 99.9% of the antiprotons extracted from the AD before they reach the experiments.

“This is a big step forward for antimatter physics. Going to extra low energy increases the trapping efficiency for antiprotons, which will not only improve the research potential of existing experiments, but will also allow CERN to support a wider range of antimatter experiments,” said Walter Oelert, an antimatter pioneer at CERN, who has actively supported the ELENA project.

Ever since the Nobel Prize winning discovery of antiprotons in 1955, these particles have proved to be an important research tool. In the 1980s, they played a pivotal role in the discovery of the W and Z particles at CERN, which also led to a Nobel Prize.

CERN’s achievements with low-energy antiprotons include the trapping and accumulation of large numbers of antiprotons in the early 1990s, which led to very precise comparisons of protons and antiprotons. In 1995, the first antiatoms - antihydrogen - were created at CERN, opening the way to new experiments on antimatter and, more recently, the trapping of antihydrogen atoms. One experiment at the AD has also made preliminary studies of the potential for using antiprotons in cancer therapy. In the future, experiments will make detailed comparisons of hydrogen and antihydrogen atoms, and measure the influence of gravity on antiprotons.

Construction of ELENA is scheduled to begin in 2013, in parallel with AD running. When complete in 2016, ELENA will be able to support more experiments than the AD can today, giving - a laboratory best known for the high-energy frontier of particle physics - a grandstand seat at the low-energy frontier.

Explore further: Fermilab's Recycler beams take electron cooling to new heights

Related Stories

When matter and antimatter collide

December 24, 2010

Antimatter, a substance that often features in science fiction, is routinely created at the CERN particle physics laboratory in Geneva, Switzerland, to provide us with a better understanding of atoms and molecules. Now, Japanese ...

Coldest Antimatter Ever Produced

July 6, 2010

( -- Physicists working at the CERN nuclear research lab on the border of Switzerland and France have generated the coldest particles of antimatter ever recorded.

Antimatter atoms ready for their close-up

February 7, 2011

Two international teams of physicists, including RIKEN researchers (Japan), have trapped and manipulated atoms made out of antimatter, in milestone experiments that should help to reveal why the substance is so rare in our ...

Recommended for you

Diagnosing breast cancer using red light

March 23, 2018

Optical Mammography, or OM, which uses harmless red or infrared light, has been developed for use in conjunction with X-rays for diagnosis or monitoring in cases demanding repeated imaging where high amounts of ionizing radiation ...

Designing a new material for improved ultrasound

March 22, 2018

Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 30, 2011
I'd like 200 femtograms of antiprotons please.

That will be minus $2000.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.