Nanoscientists invent better etching technique

August 19, 2011 By Jared Sagoff and Louise Lerner
Deep canyons can be etched into materials at the nanoscale with a new SIS-based lithography technique by Argonne National Laboratory scientists.

( -- Imagine yourself nano-sized, standing on the edge of a soon-to-be computer chip. Down shoots a beam of electrons, carving precise topography that is then etched the depth of the Grand Canyon into the chip. From the perspective of scientists at the U.S. Department of Energy’s Argonne National Laboratory, this improved form of etching could open the door to new technologies.

Argonne nanoscientist Seth Darling and colleagues at Argonne’s Center for Nanoscale Materials and Energy Systems Division say it has the potential to revolutionize how patterns are transferred onto different materials, paving a new approach for the next generation of energy, electronics and memory technologies.

The innovation combines new tricks with an old technology.

One of the biggest recent questions facing materials science has involved the development of better techniques for high-resolution lithographies such as electron-beam, or e-beam, lithography. E-beam lithography is used to manufacture the tiniest of structures, including microelectronics and advanced sensors; beams of are part of a process that "prints" desired patterns into the substance.

Transferring patterns more deeply into materials would allow scientists to craft better electronics.

To create a pattern using e-beam lithography, researchers have conventionally traced a pattern within a layer called a “resist,” which is then etched into the underlying substrate.

Because the resist is thin and fragile, an intermediate “hard mask" is generally laid between the resist and the substrate. Ideally, the hard mask would stick to the substrate long enough for the desired features to be etched and then be cleanly removed—though the extra layer often results in blurriness, rough edges and additional costs and complications.

But over the course of the past several years, Darling and his colleagues have developed a technique called sequential infiltration synthesis (SIS). Another method of building custom designs at the nanoscale level, SIS involves the controlled growth of inorganic materials within polymer films. This means that scientists can construct materials with unique properties and even with complex, 3-D geometries.

"With SIS, we can take that thin, delicate resist film and make it robust by infiltrating it with inorganic material," Darling explained. "That way, you don't need an intermediate mask, so you get around all the problems associated with that extra layer."

Although some resists might work better than others under certain conditions, no single approach had yet demonstrated the ability to ingrain a pattern with the ease, depth and fidelity of the Argonne approach, Darling said.

“It’s possible we might be able to create very narrow features well over a micron deep using only a very thin, SIS-enhanced etch mask, which from our perspective would be a breakthrough capability,” he said.

By combining sequential infiltration synthesis with block copolymers, molecules that can assemble themselves into a variety of tunable nanostructures, this technique can be extended to create even smaller features than are possible using e-beam lithography. The key is to design a selective reaction between the inorganic precursor molecules and one of the components in the block copolymer.

"This opens a wide range of possibilities," said Argonne chemist Jeff Elam, who helped create the process. "You can imagine applications for solar cells, electronics, filters, catalysts—all sorts of different devices that require nanostructures, but also the functionality of inorganic materials."

The work is published in two studies, "Enhanced polymeric lithography resists via sequential infiltration synthesis" in the Journal of Materials Chemistry and “Enhanced block copolymer lithography using sequential infiltration synthesis” in the Journal of Physical Chemistry C.

“Hopefully, our discovery gives scientists an extra advantage when it comes to creating deeper patterns with higher resolution,” Darling said.

Explore further: New possibilities for solar energy with molecular 'stencils'

Related Stories

More precise method of nanopatterning

August 4, 2011

“A nanoimprint method has already been achieved in nanopatterning with a high resolution using negative type photoresist,” Kosei Ueno tells Ueno is a scientist at Hokkaido University in Sapporo, Japan, ...

Hot off the press: Nanoscale Gutenberg-style printing

April 15, 2011

( -- When Gutenberg developed the principles of modern book printing, books became available to the masses. Hoping to bring technology capable of mass production to the nanometer scale, Udo Bach and this team ...

Molecules could create tiny circuits on computer chips

March 16, 2010

( -- As the features on computer chips become increasingly smaller, finding ways to fabricate the chips has become a big challenge. In a new study, researchers from MIT have demonstrated that certain molecules ...

Recommended for you

Atomic blasting creates new devices to measure nanoparticles

December 14, 2017

Like sandblasting at the nanometer scale, focused beams of ions ablate hard materials to form intricate three-dimensional patterns. The beams can create tiny features in the lateral dimensions—length and width, but to create ...

Engineers create plants that glow

December 13, 2017

Imagine that instead of switching on a lamp when it gets dark, you could read by the light of a glowing plant on your desk.

Faster, more accurate cancer detection using nanoparticles

December 12, 2017

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Aug 19, 2011
So the Grand Canyon, at its deepest, is 1800 meters. Assuming a person's height of 1.8 meters, the grand Canyon is 1000 times the height.
If SIS can etch micron depth, then I have to be 1 nanometer tall in order for their etchings to be comparable relative depth. That is like 9 Si atoms stacked up, disregarding the crystal structure.
not rated yet Aug 19, 2011
Purchase the full text...

Damn, this is rich. Now they want to charge you money just to tell you about a technology, product or service.
1 / 5 (1) Aug 19, 2011
@nanobanano yeah its almost as bad as magazines, newspapers, and books. how dare they charge for copyrighted material.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.