Genetic mutation may help explain first land-based plants

August 31, 2011 By Joel N. Shurkin, Inside Science News Service
Credit: Jose Hernandez @ USDA-NRCS PLANTS Database

A graduate student working in the Judaean desert has discovered a gene that could provide some of the explanation of how water plants colonized dry land.

Guoxiong Chen, a doctoral student working at Haifa University's Institute of Evolution, found the gene in wild barley more than a decade ago, but now has identified a mutation of that gene that builds a cuticle, a hard protecting layer that helps the plant retain water. Without the cuticle, the plant would expel all its water and could not survive in the air. Chen named the mutation Eibi1 after his doctoral advisor at Haifa, Eviatar Nevo.

Eibi1 probably is one of many that could have contributed to the plant's ability to live out of the water, Nevo said.

"The Eibil gene is involved in the water-to-land evolution," Chen said. "Many genes are involved. But we do not know how many and what they are. This question is very interesting to be answered after further studies."

The first forms of were blue-green algae which appeared about 3.5 billion years ago in the oceans. Plants that could produce oxygen through appeared a billion years ago and they produced the oxygen that made the Earth livable but that took hundreds of millions of years. About 600 million years ago, green algae plants with stick-like bodies began to move into the fresh water. They might have evolved onto dry land about 400 million years ago when some of the ponds evaporated. The plants with water-protecting genes would have made the transition easier than those without them.

Chen's curiosity was triggered when he discovered a form of wild barley in the desert that was significantly smaller than common wild barley found there. The gene he discovered in 2000 in the smaller cuticle-free plant was partly responsible for the plant's inability to retain water, which would explain why it wasn't doing very well in dry conditions.

After earning his doctorate, Chen went to Japan to continue his work and mapped and cloned the Eibil gene there.

In the current Proceedings of the National Academy of Sciences, the team reported an alternative form of the gene -- an allele -- that helps the common plant build cutin, the substance secreted from the plant's skin cells. That cutin protects against water loss, something a plant needs if it is going to survive in the air.

Rafael Rubio de Casas, a scientist at the National Evolutionary Synthesis Center in Durham, N.C., said the gene could have played a role but it would have been one of many.

"Retaining water would be one of the attributes that aided plants in colonizing the land," Rubio de Casas said. "This mutation probably does contribute to the cuticle which may be relevant for water retention, although whether this specific gene was present and with the same function in ancient is of course unclear."

Barley evolved from a grass and was the first domesticated plant in the Middle East, which helps explain why an ancient form was found in the Judean desert. Writer and scientist Jared Diamond has written in his book "Guns, Germs and Steel" that barley was crucial for the development of agriculture and the rise of civilization. The earliest evidence of domesticated barley is from 8,500 B.C. near the eastern shores of the Mediterranean Sea, and it has also been used to produce beer since the Neolithic Age.

According to Nevo, the discovery has ramifications in the fight against hunger since scientists may eventually be able to enhance the ability of barley and wheat to withstand drought, thus increasing crop production.

Explore further: New gene discovered: Sheds light on the evolution of life on Earth

Related Stories

Gene's past could improve the future of rice

January 23, 2009

( -- In an effort to improve rice varieties, a Purdue University researcher was part of a team that traced the evolutionary history of domesticated rice by using a process that focuses on one gene.

Newly Cloned Gene Key to More Adaptable Wheat Varieties

December 5, 2006

In a research discovery that has practical implications for improving wheat varieties, a team of scientists at the University of California, Davis, and the U.S. Department of Agriculture have cloned a gene that controls the ...

Gene helps plants use less water without biomass loss

January 11, 2011

( -- Purdue University researchers have found a genetic mutation that allows a plant to better endure drought without losing biomass, a discovery that could reduce the amount of water required for growing plants ...

Plant gene for water efficiency found

July 11, 2005

ANU researchers have identified a gene that regulates the water efficiency of plants, the first to be discovered that mediates the process critical to plant survival, crop yield and vegetation dynamics. Dr Josette Masle, ...

Salt-tolerant gene found in simple plant nothing to sneeze at

April 7, 2008

Whether a plant withers unproductively or thrives in salty conditions may now be better understood by biologists. The cellular mechanism that controls salt tolerance has been found in the arabidopsis plant by a Texas AgriLife ...

Recommended for you

China seems to confirm scientist's gene-edited babies claim

January 21, 2019

Chinese authorities appear to have confirmed a scientist's unpublished claim that he helped make the world's first gene-edited babies and that a second pregnancy is underway, and say he could face consequences for his work.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.