Plant branching hormone discovered

July 8, 2011

(PhysOrg.com) -- In an important breakthrough, plant biologists at The University of Queensland have identified a hormone that plays a key role in determining the size and shape of plants.

The discovery of the strigolactone could have enormous impact on the forestry and horticultural industries, and is expected to lead to the ability to custom design the shape of plants.

“Taller plants can be produced by boosting strigolactone, and bushier plants can be grown by suppressing the hormone,” UQ Associate Professor Dr. Christine Beveridge said.

“In the case of fruit-producing trees where the yield comes from the branches, repression of the chemical — that is, to create more branches — can give a better harvest.”

A number of factors work together to determine plant shape and size, but the discovery of strigolactone's role in inhibiting branch development was important, Dr. Beveridge said, and paved the way for understanding the regulatory framework behind plant development.

“It is interesting that strigolactone uses a long-distance signaling process to determine plant shoot branching,” Dr. Beveridge said.

“Strigolactone's capacity to have an impact on shoot branching will be conducive to obtaining a desired shape in and is sure to prove beneficial in crop production.”

Dr. Beveridge, who is a Future Fellow of the Australian Research Council, said in the industry the hormone could be manipulated to inhibit branch production and contribute to better stem growth and wood production.

Researchers from the University of Western Australia (UWA) have detected a structurally similar chemical called karrikins in smoke that affects the sprouting of dormant seeds after fire.

Through research done under a UQ-UWA Bilateral Research Collaboration Award, a gene called MAX2 was found to control the functioning of both strigolactone and karrikins.

Dr. Beveridge said despite the similarity in the structure of the two hormones and their similar response systems, karrikins did not affect shoot branching.

Current promising leads with these hormones on their chemistry and on other aspects of plant development could result in improvements in the propagation of endangered and economically important plant species and in weed eradication and reforestation.

UQ's main commercialisation company, UniQuest, is currently working towards commercialisation opportunities for this technology.

Explore further: New plant hormone functions offer solutions for parasitic weeds

Related Stories

Biologists solve plant hormone enigma

July 6, 2006

Gardeners and farmers have used the plant hormone auxin for decades and now U.S. scientists have found how plants produce and distribute the hormone.

Recommended for you

Knowledge gap on the origin of sex

May 26, 2017

There are significant gaps in our knowledge on the evolution of sex, according to a research review on sex chromosomes from Lund University in Sweden. Even after more than a century of study, researchers do not know enough ...

The high cost of communication among social bees

May 26, 2017

(Phys.org)—Eusocial insects are predominantly dependent on chemosensory communication to coordinate social organization and define group membership. As the social complexity of a species increases, individual members require ...

Darwin was right: Females prefer sex with good listeners

May 26, 2017

Almost 150 years after Charles Darwin first proposed a little-known prediction from his theory of sexual selection, researchers have found that male moths with larger antennae are better at detecting female signals.

Why communication is vital—even among plants and funghi

May 26, 2017

Plant scientists at the University of Cambridge have found a plant protein indispensable for communication early in the formation of symbiosis - the mutually beneficial relationship between plants and fungi. Symbiosis significantly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.