The origin of comet material formed at high temperatures

July 22, 2011
Effect of photophoresis on a particle in the primordial nebula: the particle moves in the direction opposite to the Sun due to the variation in pressure of the gas, which is heated on the “day” side and cooled on the “night” side. Radiation Gas molecules Rapid Hot Force Slow Cold. Credit: O. Mousis

Comets are icy bodies, yet they are made of materials formed at very high temperatures. Where do these materials come from? French researchers have now provided the physical explanation behind this phenomenon. They have demonstrated how these materials migrated from the hottest parts of the solar system to its outer regions before entering the composition of comets. Their results are published in the July 2011 issue of the journal Astronomy & Astrophysics.

On 15 January 2006, after an eight-year voyage, NASA's Stardust Mission (Discovery program) brought dust from Wild 2 back to Earth. Comets are formed at very low temperatures (around 50 Kelvin, i.e. -223 C). However, analyses have revealed that Comet Wild 2 is made of crystalline silicates and CAIs (Calcium-Aluminium-rich Inclusions). Considering that the synthesis of these minerals requires very (above 1 000 Kelvin or 727 C), how can this composition be explained?

A team from the Institut UTINAM1, in collaboration with researchers from the Institut de Physique de Rennes, the University of Duisburg-Essen (Germany) and the Laboratoire Astrophysique, Instrumentation et Modélisation, have provided the answer on the basis of a physical phenomenon called photophoresis. This force depends on two parameters: the intensity of solar radiation and gas pressure.

At the birth of the solar system, the comets were formed from the protoplanetary disk. Inside this disk, a mixture of solid grains ranging in size from a few microns to several centimeters was bathed in a dilute gas that let sunlight through. According to the researchers, photophoresis drove the particles towards the outer regions of the disk. Under the effect of solar radiation, one face of the grains was “hotter” than the other and the behavior of gas molecules on the surface of these grains was modified: on the “sunny” side, the gas molecules were more unstable and moved about more rapidly than on the “cold” side.

By causing a pressure difference, this imbalance moved the grains away from the Sun (see diagram below). Through digital simulations, the researchers have borne out this photophoresis phenomenon. They demonstrated that the grains of crystalline silicates formed in the inner, hot region of the protoplanetary disk near to the Sun migrated to its outer, cold region before playing a part in the formation of the comets. This novel physical explanation could account for the position of certain dust rings observed in protoplanetary disks and thus shed light on the conditions of planet formation.

Explore further: First measurement of the age of cometary material

More information: Photophoretic transport of hot minerals in the solar nebula - A. Moudens, et al. - Astronomy and Astrophysics, 531 July 2011

Related Stories

First measurement of the age of cometary material

February 25, 2010

(PhysOrg.com) -- Though comets are thought to be some of the oldest, most primitive bodies in the solar system, new research on comet Wild 2 indicates that inner solar system material was transported to the comet-forming ...

Stardust Findings May Alter View of Comet Formation

March 14, 2006

Samples from comet Wild 2 have surprised scientists, indicating the formation of at least some comets may have included materials ejected by the early sun to the far reaches of the solar system.

Recommended for you

Four new short-period giant planets discovered

July 26, 2017

(Phys.org)—Astronomers have detected four new giant exoplanets as part of the Hungarian-made Automated Telescope Network-South (HATSouth) exoplanet survey. The newly found alien worlds are about the size of Jupiter, but ...

Large, distant comets more common than previously thought

July 25, 2017

Comets that take more than 200 years to make one revolution around the sun are notoriously difficult to study. Because they spend most of their time far from our area of the solar system, many "long-period comets" will never ...

Mapping dark matter

July 24, 2017

About eighty-five percent of the matter in the universe is in the form of dark matter, whose nature remains a mystery. The rest of the matter in the universe is of the kind found in atoms. Astronomers studying the evolution ...

New Type Ia supernova discovered using gravitational lensing

July 24, 2017

(Phys.org)—Using gravitational lensing, an international team of astronomers has detected a new Type Ia supernova. The newly discovered lensed supernova was found behind the galaxy cluster known as MOO J1014+0038. The findings ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.