Raman nanoparticle-aided imaging of tumors moves closer to human trials

June 28, 2011, National Cancer Institute

(PhysOrg.com) -- In 2008, a team of investigators at Stanford University's Center for Cancer Nanotechnology Excellence demonstrated that they could use a technique known as nanoparticle-aided Raman spectroscopy to look at microscopic structures, including nascent tumors, deep inside the body. That team has now conducted extensive preclinical tests and shown that the gold nanoparticles can be safely administered into the colon and used with a Raman endoscope to image the inside of the large intestines.

Reporting their work in the journal Small, Sanjiv Sam Gambhir and his colleagues describe the experiments they conducted using radioactively labeled to track the accumulation of the nanoparticle imaging agents inside mice. Dr. Gambhir is the principal investigator of the Stanford Center for Cancer Nanotechnology Excellence, one of nine such centers included in the National Cancer Institute's Alliance for Nanotechnology in Cancer.

After labeling the nanoparticles with a of copper, the investigators used micro-positron emission tomography (micro-PET) to image the nanoparticles' location in the body. When the nanoparticles were injected intravenously, they accumulated in a variety of organs, with almost 10 percent of the dose of nanoparticles ending up in the liver. In contrast, when the nanoparticles were injected rectally into the colon, less than 1/10th of 1 percent of the nanoparticles accumulated outside of the even as far as two weeks after injection. In the colon, the nanoparticles could be visualized using an endoscope modified to detect Raman signals.

Explore further: Nanoparticles Provide Detailed View Inside Living Animals

More information: Preclinical Evaluation of Raman Nanoparticle Biodistribution for their Potential Use in Clinical Endoscopy Imaging, DOI:10.1002/smll.201002317

Raman imaging offers unsurpassed sensitivity and multiplexing capabilities. However, its limited depth of light penetration makes direct clinical translation challenging. Therefore, a more suitable way to harness its attributes in a clinical setting would be to couple Raman spectroscopy with endoscopy. The use of an accessory Raman endoscope in conjunction with topically administered tumor-targeting Raman nanoparticles during a routine colonoscopy could offer a new way to sensitively detect dysplastic lesions while circumventing Raman’s limited depth of penetration and avoiding systemic toxicity. In this study, the natural biodistribution of gold surface-enhanced Raman scattering (SERS) nanoparticles is evaluated by radiolabeling them with 64Cu and imaging their localization over time using micropositron emission tomography (PET). Mice are injected either intravenously (IV) or intrarectally (IR) with approximately 100 microcuries (μCi) (3.7 megabecquerel (MBq)) of 64Cu-SERS nanoparticles and imaged with microPET at various time points post injection. Quantitative biodistribution data are obtained as % injected dose per gram (%ID g−1) from each organ, and the results correlate well with the corresponding microPET images, revealing that IV-injected mice have significantly higher uptake (p < 0.05) in the liver (5 h = 8.96% ID g−1; 24 h = 8.27% ID g−1) than IR-injected mice (5 h = 0.09% ID g−1; 24 h = 0.08% ID g−1). IR-injected mice show localized uptake in the large intestine (5 h = 10.37% ID g−1; 24 h = 0.42% ID g−1) with minimal uptake in other organs. Raman imaging of excised tissues correlate well with biodistribution data. These results suggest that the topical application of SERS nanoparticles in the mouse colon appears to minimize their systemic distribution, thus avoiding potential toxicity and supporting the clinical translation of Raman spectroscopy as an endoscopic imaging tool.

Related Stories

Nanoparticles Provide Detailed View Inside Living Animals

April 18, 2008

Using nanoparticles designed specifically to produce a bright Raman spectroscopic signal, a team of investigators at the Center for Cancer Nanotechnology Excellence Focused on Therapy Response (Stanford CCNE) has shown that ...

Natural Gum Improves Gold Nanoparticles for Cancer Imaging

February 12, 2007

Gold nanoparticles have shown significant promise as agents to detect and treat cancer, but researchers have had difficulty creating gold nanoparticles that have suitable pharmacological properties for use in humans. A team ...

Tracking tumor-targeting nanoparticles in the body

October 27, 2010

Though targeted nanoparticle-based imaging agents and therapeutics for diagnosing and treating cancer are making their way to and through the clinical trials process, researchers still do not have a good understanding of ...

Self-Assembling Nanoparticles Image Tumor Cells

July 23, 2007

By taking advantage of the full range of ways in which molecules can interact with and bind to one another, a team of investigators at the Carolina Center of Cancer Nanotechnology Excellence has created nanoparticles that ...

Tracking therapeutic nanoparticles that target breast tumors

December 17, 2010

Researchers at Rice University, collaborating with investigators at the Baylor College of Medicine, have used two different types of imaging technologies to track the delivery of a therapeutic nanoparticle to breast tumors. ...

Recommended for you

Researchers create first superatomic 2-D semiconductor

February 16, 2018

Atoms are the basic building blocks of all matter—at least, that is the conventional picture. In a new study, researchers have fabricated the first superatomic 2-D semiconductor, a material whose basic units aren't atoms ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.