Magnetic control of anomalous hall effect induced by spin chirality

June 29, 2011 By Mikiko Tanifuji

Institute for Solid State Physics, the University of Tokyo and RIKEN announced that researchers from both institutes succeeded in the magnetic control of anomalous Hall effect (AHE) induced by spin chirality. Details were published in Physical Review Letters.

Since spin chirality (solid angle formed by spin) is accompanied with a strong virtual magnetic field, AHE is observed without applying field. Such large Hall voltages under weak magnetic fields may lead to a promising nonvolatile memory with reduced power dissipation because of the absence of hysteresis loss.

In the present work, AHE of the chiral spin states of Pr2Ir2O7 was found to appear below 1.5 K at a zero magnetic field with hysteresis most pronounced for fields cycled along the [111] direction. A large positive magnetoresisitance was also observed only for fields along the [111] direction. These observa-tions suggest the reconstruction of the of the conduction electrons by the field-induced spin texture.

The present results, the authors of the paper expect, may provide a mean to control magnetically the AHE induced by spin chirality, which might be a step toward based on the AHE.

Explore further: Physicists measure current-induced torque in nonvolatile magnetic memory devices

More information: L. Balicas, et al, "Anisotropic Hysteretic Hall Effect and Magnetic Control of Chiral Domains in the Chiral Spin States of Pr2Ir2O7", Physical Review Letters, Vol. 106, No. 21, p. 217204 (2011) [4 pages] Published May 26, 2010.

Related Stories

Spin-polarized electrons on demand

January 15, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin-polarized electrons on demand

January 21, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Recommended for you

Flexible ferroelectrics bring two material worlds together

January 17, 2017

Until recently, "flexible ferroelectrics" could have been thought of as the same type of oxymoronic phrase. However, thanks to a new discovery by the U.S. Department of Energy's (DOE) Argonne National Laboratory in collaboration ...

First-ever X-ray image capture of material defect process

January 17, 2017

From blacksmiths forging iron to artisans blowing glass, humans have for centuries been changing the properties of materials to build better tools – from iron horseshoes and swords to glass jars and medicine vials.

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(Phys.org)—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.