Nano-tuned solar cells

May 18, 2011 by Corinna Luecke

Solar cells that are more effective and cost less in production: Within the EU-project N2P (Nano to Product) researchers developed nano tuned surfaces to gain both.

The sun has enough power to supply the whole earth with energy. But as long as renewable energy is more expensive than energy produced by coal or , won’t be first choice. In Europe photovoltaic cells make only a vanishing small share of sources.

Researchers in UK, Switzerland and Germany aim to lower the costs and increase the efficiency. The N2P project is coordinated by the Fraunhofer Institute for Material and Beam Technology in Dresden, Germany. Here researchers developed a process to enhance the absorption qualities of solar cells for an invisible yet important part of sunlight, infrared light. Conventional solar cells hardly make use of this wavelength. Most of it passes through the cell and is lost. By removing the nano structured surface of the wafer on the rear side of the solar cell, using a chemical etching process, it is turns into a “mirror” that reflects the infrared rays back into the cell.


As the light rays are scattered by the glass, they have a longer pathway through the silicon cell and thus generate more electrical current. So far the researchers were able to increase the efficiency by 30 percent if compared to the efficiency of standard thin film solar cells.

Researchers from the Ecole Polytechnique Federale de Lausanne (EPFL) in Neuchatel, Switzerland, are working on thin film solar cells. Thin film solar cells have on the one hand a lot of advantages: Producing them consumes less raw materials and energy than producing common solar cells. Additionally the time they need to pay off is shorter. On the other hand there is a drawback: currently their efficiency is about 40 percent lower than in conventional solar cells. Only seven percent of the sunlight can be exploited.

To maximize the light trapping effect they do the opposite: they roughen the glass surface of thin film solar cells. This is done to diffuse the light. When the light beam has a longer way through the cell it generates more electrons.

To roughen the upper surface Dr. Sylvain Nicolay from EPFL deposits a layer of crystals of a so called transparent conductive oxide onto the glass. “The larger the nano sized pyramids are, the higher is the diffusion”, he says. The efficiency of thin film solar cells is now improved from seven to ten percent.

The nano crystals Dr Nicolay uses were developed at the University of Salford in Manchester, UK. Until recently the nano crystals had to be imported from Japan and made the production of such solar cells very expensive. Now the scientists are testing the crystals they developed on their own. The aim is to produce them much cheaper and thus reduce the costs significantly.

Each single method of improving the solar cells can only make a small difference on their efficiency. But combining both, these nano-tuned will become considerably more competitive than the modules of the past.

Explore further: Solar cells can be made thinner and lighter with the help of aluminum particles

Related Stories

Honda to Mass Produce Next-Generation Thin Film Solar Cell

December 19, 2005

Honda announced its plan to begin mass production in 2007, of an independently developed thin film solar cell composed of non-silicon compound materials, which requires 50% less energy, and thus generate 50% less CO2, during ...

Hot Electrons Could Double Solar Cell Power Efficiency

December 18, 2009

Scientists have experimentally verified a theory suggesting that hot electrons could double the output of solar cells. The researchers, from Boston College, have built solar cells that successfully use hot electrons to increase ...

Recommended for you

Cheap, sustainable battery made from tree bark tannins

December 18, 2017

(—Tannins may be best known for their presence in red wine and tea, but in a new study researchers have demonstrated for the first time that tannins from tree bark can also serve as battery cathode materials. As ...

Using gold nanoparticles to destroy viruses

December 18, 2017

EPFL researchers have created nanoparticles that attract viruses and, using the pressure resulting from the binding process, destroy them. This revolutionary approach could lead to the development of broad-spectrum antiviral ...

Nanotubes go with the flow to penetrate brain tissue

December 18, 2017

Rice University researchers have invented a device that uses fast-moving fluids to insert flexible, conductive carbon nanotube fibers into the brain, where they can help record the actions of neurons.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.