Zooming in on the weapons of Salmonella

March 4, 2011

Some of the most dreaded diseases in the world such as plague, typhoid and cholera are caused by bacteria that have one thing in common: they possess an infection apparatus which is a nearly unbeatable weapon. When attacking a cell of the body, they develop numerous hollow-needle-shaped structures that project from the bacterial surface. Through these needles, the bacteria inject signal substances into the host cells, which re-program the latter and thereby overcome their defense. From this time on it's easy game for the pathogens; they can invade the cells unimpeded and in large numbers.

The and biophysicist Thomas Marlovits, a group leader at the Vienna Institutes IMP (Research Institute of Molecular Pathology) and IMBA (Institute of ) has been occupied for several years with the infection complex of salmonellae. As early as in 2006 Thomas Marlovits showed how the needle complex of typhimurium develops (Nature 441, 637-640). Together with his doctoral student Oliver Schraidt he has now been able to demonstrate the three-dimensional structure of this complex in extremely high resolution. The team was able to show details with dimensions of just 5 to 6 angstroems, which are nearly atomic orders of magnitude. Their work will be presented in the forthcoming issue of the journal Science.

Looks do kill!

Never before has the infection tool of salmonellae been presented in such precision. This was achieved by the combined use of high-resolution cryo-electron microscopy and specially developed imaging software. "Austria's coolest microscope" makes it possible to shock-freeze biological samples at minus 196 degrees centigrade and view them in almost unchanged condition. However, when "zooming in" on their object, scientists are confronted with a treacherous problem: the high-energy falls at such high concentrations on the sample that the latter is destroyed after the very first image.

The Viennese scientists have resolved the problem by developing new image-processing algorithms and with sheer numbers of images. They analyzed about 37,000 images of isolated needle complexes. Similar images were grouped and computed jointly. By doing so they were able to generate a single sharp image from numerous blurred ones. This enormous computing power was created by a cluster of about 500 interconnected computers.

Microscopy without the human interference factor

The microscope works in semi-automated fashion at night to obtain the large number of images. This is very advantageous because human beings merely interfere with the job. They breathe, speak, move, and thus unsettle the sensitive microscope. Even a moving elevator may irritate the electron beam.

The cryo-electron microscope at IMP-IMBA is the only one of its kind in Austria. The immense technical effort associated with its operation pays off, as far as the scientists are concerned. Advancing into the subnanometer range created a further means of expanding their knowledge. They were able to "adjust" existing data (obtained from crystallography) to the needle structure and thus complement the three-dimensional image in a perfect manner. The use of this hybrid method enabled the scientists to elucidate the complete construction plan of the infection apparatus.

Thomas Marlovits regards this technology as an innovation boost: "Using the methods we developed for our work, we were able to establish "imaging" standards at a very high level. We can explore its absolute limits with the aid of the fantastic infrastructure we have here at Campus Vienna Biocenter."

This knowledge not only advances basic research. "Using our data, we may well be able to find a compound that interferes with the needle complex and disturb its function," says Marlovits. "We would then have a very effective medication - one that combats not only salmonellae but also other pathogens that employ this system, such as pathogens that cause cholera, plague or typhoid."

Explore further: How bacteria make syringes: Scientists reconstruct bacterial transport channel in test tube

More information: "Three-Dimensional Model of Salmonella's Needle Complex at Subnanometer Resolution". Oliver Schraidt & Thomas C. Marlovits, Science 331, pp. 1192-1195, March 4, 2011.

Related Stories

Cryo-electron microscope 'sees' atoms for first time

May 4, 2010

(PhysOrg.com) -- UCLA researchers report in the April 30 edition of the journal Cell that they have imaged a virus structure at a resolution high enough to effectively "see" atoms, the first published instance of imaging ...

Scientists gain new understanding of disease-causing bacteria

November 30, 2009

A team of scientists from The Forsyth Institute, the University of Connecticut Health Center, the CDC and the Wadsworth Center, have used state-of-the-art technology to elucidate the molecular architecture of Treponema pallidum, ...

Recommended for you

Scientists develop first catalysed reaction using iron salts

January 20, 2017

Scientists at the University of Huddersfield have developed a new chemical reaction that is catalysed using simple iron salts – an inexpensive, abundant and sustainable alternative to costlier and scarcer metals. The research ...

Chemists cook up new nanomaterial and imaging method

January 20, 2017

A team of chemists led by Northwestern University's William Dichtel has cooked up something big: The scientists created an entirely new type of nanomaterial and watched it form in real time—a chemistry first.

Gecko inspired adhesive can attach and detach using UV light

January 19, 2017

(Phys.org)—A small team of researchers at Kiel University in Germany has developed new technology that emulates the way a gecko uses its toes to cling to flat surfaces. In their paper published in the journal Science Robotics, ...

Treated carbon pulls radioactive elements from water

January 19, 2017

Researchers at Rice University and Kazan Federal University in Russia have found a way to extract radioactivity from water and said their discovery could help purify the hundreds of millions of gallons of contaminated water ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.