The role of metal ions in amyotrophic lateral sclerosis

March 10, 2011 By Megan Bourassa and Lisa Miller, Brookhaven National Laboratory
Infrared and x-ray fluorescence microscopy (XFM) images of half a spinal cord cross section from a normal mouse (non-transgenic), a healthy mouse expressing normal SOD (wild-type), and diseased ALS mice with SOD mutations (G93A, G37R, and H46R/H48Q). The top row contains infrared data showing the lipid-rich white matter around the protein-rich gray matter. The second and third rows show the copper and zinc content from x-ray fluorescence microprobe X27A. Copper was decreased in gray matter of the H46R/H48Q mutations, which does not bind copper. All of the spinal cords from the sick mice contain more zinc in the white matter compared to the healthy mice. The white scale bar represents 0.1 mm, and the XFM scale bars are in concentration units of mM.

( -- Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a progressive neurodegenerative disease that affects motor neurons in the spinal cord, leading to muscle weakness, paralysis, and death within two to five years. With a lifetime risk of 1 in 2,000, ALS is the most common motor neuron disease.

Approximately 90 percent of all ALS cases are sporadic in nature, with no known cause. However, the remaining 10 percent are inherited. Of these genetic cases, 20 percent are linked to mutations in the metal-containing protein superoxide dismutase (SOD1), which is an important that requires for structural stability and copper for its detoxifying function. Interestingly, over 145 different mutations in SOD1 have been identified in patients with ALS.

In a study recently published in the , our team at BNL and collaborators from UCLA, the University of Florida, and Stony Brook University used mouse models of ALS to understand how and SOD1 mutations play a role in the disease process. These mice were genetically predisposed to develop ALS-like disease by over-producing human forms of mutated SOD1. Similar to human patients, they develop aggregates of SOD1 in the and undergo progressive paralysis. To explore the role of metal ions in aggregation and disease, we analyzed copper and zinc in the spinal cord tissue in two different ways. First, we determined whether the SOD1 protein molecules were fully "metallated," which makes the protein functional. Second, we examined the overall distributions of copper and zinc in the spinal cord.

For the first part of the study, SOD1 was gently extracted from the spinal cord and separated into soluble (non-aggregated) and insoluble (aggregated) fractions, which were analyzed for metal content. The results showed that the aggregates did not contain the necessary metal ions for the proteins to be functional. In contrast, the soluble SOD1 contained the expected amount of copper and zinc needed for the protein to function. Since SOD1 is highly stable once it is fully metallated, these findings support the hypothesis that the aggregates of mutated SOD1 are derived from immature protein before it has a chance to acquire the necessary copper and zinc ions.

In the second part of the study, NSLS beamline X27A was used to image the distribution of copper and zinc in cross-sections of the spinal cords. For those mutations where SOD1 was able to bind copper ions, results showed that copper was redistributed to regions with high SOD1, leaving other regions of tissue copper-deficient. The zinc distribution followed a different trend, where a high concentration of zinc was found in the spinal cord's "white matter" for all mutations, regardless of the mutation's ability to bind metal ions. Since the white matter is the region of the spinal cord where nerve transmission occurs, high zinc content may indicate short-circuiting or death of neurons.

As a result of these studies, we have new information about the progression of ALS. For example, it is likely the aggregates in ALS arise from newly formed SOD1, prior to metallation. Once and zinc bind to SOD1, it becomes very stable and is no longer susceptible to aggregation. Thus, one treatment approach to ALS may involve methods for metallating SOD1 prior to aggregate formation. In addition, the disease process induces a redistribution of metal ions in the spinal cord, further compromising the tissue metabolism. Interestingly, the change in zinc content may provide a diagnostic marker of the disease process, and future studies at earlier stages of the disease will investigate this possibility.

Explore further: Neuron-damaging mechanism discovered in mouse model of inherited amyotrophic lateral sclerosis

More information: H.L. Lelie, et al., "Copper and Zinc Metallation Status of Copper-Zinc Superoxide Dismutase from Amyotrophic Lateral Sclerosis Transgenic Mice," Journal of Biological Chemistry, 286, 2795 (2011).

Related Stories

Genetics of ALS progression

June 1, 2008

An upcoming paper in the June 1 issue of G&D, from Drs. Hidenori Ichijo and Hideki Nishitoh (University of Tokyo) and colleagues, lends new and valuable insight into the genetics of ALS.

Researchers identify protein associated with sporadic ALS

October 18, 2010

Researchers at the University of Massachusetts Medical School have uncovered new evidence suggesting that the SOD1 gene, which is implicated in 20 percent of inherited cases of amyotrophic lateral sclerosis (ALS, or Lou Gehrig's ...

Researchers discover genetic link between both types of ALS

May 5, 2010

Researchers from Northwestern University Feinberg School of Medicine have discovered a link between sporadic and familial forms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease also known as Lou Gehrig's ...

Fatal brain disease at work well before symptoms appear

June 8, 2009

University of Florida scientists have discovered why a paralyzing brain disorder speeds along more rapidly in some patients than others — a finding that may finally give researchers an entry point toward an effective treatment ...

Compound shows potential for slowing progression of ALS

October 19, 2009

A chemical cousin of a drug currently used to treat sepsis dramatically slows the progression of amyotrophic lateral sclerosis, better known as ALS or Lou Gehrig's disease, in mice. The results offer a bit of good news in ...

Recommended for you

Engineers test drug transfer using placenta-on-a-chip

February 16, 2018

Researchers at the University of Pennsylvania's School of Engineering and Applied Science have demonstrated the feasibility of their "organ-on-a-chip" platform in studying how drugs are transported across the human placental ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 10, 2011
Excellent news. I am sure it will be a contribution to science. We know that the millions of people who suffer from this disease and take prescribed medicines as oxycodone to ease the pain as always appreciate. Because mentioned Findrxonline these medicines have side effects that can damage their health.
not rated yet Mar 14, 2011
So, 10% are inherited, of which only 20% are associated with this gene. Therefore, even if this results in a "cure" for these people, it only helps 2% of ALL cases? Also, since ALS is diagnosed in 1-2 persons per 100,000 people, I find it hard to believe that there are "millions of people who suffer from this disease"...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.