Dawn gets Vesta target practice (w/ Video)

March 11, 2011 By Jia-Rui C. Cook, JPL/NASA
This image shows the scientists' best guess to date of what the surface of the protoplanet Vesta might look like from the south pole, as projected onto a sphere 250 kilometers (160 miles) in radius. Credit: NASA/JPL-Caltech/UCLA/PSI

There is an old chestnut about a pedestrian who once asked a virtuoso violinist near Carnegie Hall how to get to the famed concert venue. The virtuoso's answer: practice!

The same applies to NASA's Dawn mission to the giant asteroid Vesta. In the lead-up to orbiting the second most massive body in the this coming July, Dawn mission planners and scientists have been practicing mapping Vesta's surface, producing still images and a rotating animation that includes the scientists' best guess to date of what the surface might look like.

The animation and images incorporate the best data on the dimples and bulges of Vesta from ground-based telescopes and NASA's . The The topography is color-coded by altitude. The cratering and small-scale surface variations are computer-generated, based on the patterns seen on Earth's moon, an inner object with a surface appearance that may be similar to Vesta.

"We won't know what Vesta really looks like until Dawn gets there," said Carol Raymond, Dawn's deputy principal investigator, based at NASA's Jet Propulsion Laboratory, Pasadena, Calif., who helped orchestrate the activity. "But we needed a way to make sure our imaging plans would give us the best results possible. The products have proven that Dawn's mapping techniques will reveal a detailed view of this world that we've never seen up close before."

This video shows the scientists' best guess to date of what the surface of the protoplanet Vesta might look like. It was created as part of an exercise for NASA's Dawn mission involving mission planners at NASA's Jet Propulsion Laboratory and science team members at the German Aerospace Center and the Planetary Science Institute. Image credit: NASA/JPL-Caltech/ESA/UCLA/DLR/PSI/STScI/UMd

Vesta is one of the brightest asteroids in the night sky. Under the right conditions, Vesta can be seen with binoculars. But the best images so far from ground-based telescopes and Hubble still show Vesta as a bright, mottled orb. Once in orbit around Vesta, Dawn will pass about 650 kilometers (400 miles) above the asteroid's surface, snapping multi-angle images that will allow scientists to produce topographic maps. Later, Dawn will orbit at a lower altitude of about 200 kilometers (120 miles), getting closer shots of parts of the surface.

The Dawn mission will have the capability to map 80 percent of the asteroid's surface in the year the spacecraft is in orbit around Vesta. (The north pole will be dark when Dawn arrives in July 2011 and is expected to be only dimly lit when Dawn leaves in July 2012.) The mission will map Vesta at a spatial resolution on the order of the best global topography maps of Earth made by NASA's Shuttle Radar Topography mission.

Vesta formed very early in the history of the solar system and has one of the oldest surfaces in the system. Scientists are eager to get their first close-up look so they can better understand this early chapter.

Starting in August 2009, Dawn's optical navigation lead, Nick Mastrodemos, based at JPL, developed a computer simulation of the orbits and images to be taken by the spacecraft. He adapted software developed by Bob Gaskell of the Planetary Science Institute, Tuscon, Ariz. Mastrodemos created a model using scientists' best knowledge of Vesta and simulated the pictures that Dawn would take from the exact distances and geometries in the Dawn science plan.

He sent those images to two teams that use different techniques to derive topographical heights from imaging. One, led by Thomas Roatsch, was based at the Institute of Planetary Research of the German Aerospace Center (DLR) in Berlin. The other, led by Gaskell, was based at the Planetary Science Institute in Tuscon. (Like the Roatsch team, the Gaskell team did not have prior knowledge of the model from which the simulated data were created.) The groups sent their digital terrain models back to JPL, including the video produced by Frank Preusker from DLR that is based on his full stereo processing.

Mastrodemos compared their products to the original model he made. Both techniques reproduced the known data set well with only minor differences in spatial resolution and height accuracy. "Working through this exercise, the mission planners and the scientists learned that we could improve the overall accuracy of the topographic reconstruction, using a somewhat different observation geometry," Mastrodemos said. "Since then, Dawn science planners have worked to tweak the plans to implement the lessons of the exercise."

The exercise helped both teams get an early start on updating their software and planning the necessary computer resources. "In order to plan for proper stereo coverage of an unknown body like Vesta, practice is essential," said Roatsch, who is responsible for the framing camera team's stereo observation planning.

For now, the Virtual Vesta exercise gives the Dawn science team a fleshed-out model to consider. But to see whether their educated guesses were right, the team will have to wait until Dawn arrives at its target in four months.

Explore further: NASA mission to asteroid gets help from Hubble Space Telescope (w/ Video)

Related Stories

Dawn Enters Asteroid Belt -- For Good

November 16, 2009

(PhysOrg.com) -- NASA's Dawn spacecraft re-entered our solar system's asteroid belt today, Nov. 13, and this time it will stay there.

Dawn Glides Into New Year

November 21, 2008

(PhysOrg.com) -- NASA's Dawn spacecraft shut down its ion propulsion system today as scheduled. The spacecraft is now gliding toward a Mars flyby in February of next year.

Dawn moves closer to the asteroid belt

September 12, 2007

NASA's Dawn spacecraft has been positioned at Kennedy Space Center's launch pad 17B atop a Delta II rocket for its launch from Florida later this month.

Dawn Finishes Mars Phase

February 27, 2009

(PhysOrg.com) -- With Mars disappearing in its metaphorical rearview mirror, NASA's Dawn spacecraft's next stop is the asteroid belt and the giant asteroid Vesta. Dawn got as close as 549 kilometers (341 miles) to the Red ...

Recommended for you

NASA powers on new instrument staring at the Sun

March 16, 2018

NASA has powered on its latest space payload to continue long-term measurements of the Sun's incoming energy. Total and Spectral solar Irradiance Sensor (TSIS-1), installed on the International Space Station, became fully ...

Dawn reveals recent changes in Ceres' surface

March 15, 2018

Observations of Ceres have detected recent variations in its surface, revealing that the only dwarf planet in the inner solar system is a dynamic body that continues to evolve and change.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 11, 2011
"Vesta is one of the brightest asteroids in the night sky. Under the right conditions, Vesta can be seen with binoculars."

Under the best of circumstances Vesta appears as THE brightest asteroid visible from Earth and can be seen with the naked eye: http://en.wikiped...sibility

In early 2007, during a favorable opposition (occurring near perihelion), Vesta got as bright as magnitude +5.4.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.